Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Initiation of chemical carcinogenesis requires cell proliferation

Abstract

CELL proliferation has often been implicated in the development of cancer with chemicals1–3. Supportive evidence for this is the observation that several carcinogens that normally do not induce liver cancer in intact adult animals, especially with a single dose, become carcinogenic if administered as a single injection after partial hepatectomy (PH)1. In these conditions, it is thought that PH may act during initiation, presumably by fixation of some carcinogen-induced DNA damage through replication of the altered DNA. However, because carcinogenesis is a multi-step process, often involving the appearance of several new cell populations between the initial target cells and the ultimate cancer4,5, it is possible that the regenerative response of liver following PH could have a major effect on one or more steps subsequent to initiation. Thus, the use of a very late end-point (cancer) makes it difficult, if not impossible, to relate with any accuracy some very early event to any specific step in the carcinogenic process. Solt and Farber6 have recently developed a new approach to the sequential analysis of carcinogenesis in vivo that delineates the first few steps in the process and is a quantitative assay for initiation of liver cancer. We have used this model to investigate whether cell replication exerts its first effect on initiation or on some later step in the carcinogenic process. And if initiation is at least one site of action, when in the regenerative cell cycle is a carcinogen most effective and what biochemical events might be involved at this phase of the cell cycle?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Craddock, V. M. in Liver Cell Cancer (eds Cameron, H. M., Linsell, D. S. & Warwick, G. P.) 153–201 (Elsevier, Amsterdam, 1976).

    Book  Google Scholar 

  2. Rajewsky, M. F. Z. Krebsforsch. 78, 12–30 (1972).

    Article  CAS  Google Scholar 

  3. Warwick, G. P. Fedn Proc. 30, 1760–1765 (1971).

    CAS  Google Scholar 

  4. Foulds, L. Neoplastic Development 1, Ch. 3 (Academic, London, 1969).

    Google Scholar 

  5. Farber, E. Cancer Res. 33, 2537–2550 (1973).

    CAS  PubMed  Google Scholar 

  6. Solt, D. & Farber, E. Nature 263, 701–703 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Solt, D., Medline, A. & Farber, E. Am. J. Path. 88, 595–610 (1977).

    CAS  PubMed  Google Scholar 

  8. Cameron, R., Kellen, J., Kolin, A., Malkin, A. & Farber, E. Cancer Res. 38, 823–829 (1978).

    CAS  PubMed  Google Scholar 

  9. Fiala, S., Fiala, A. E. & Dixon, B. J. natn. Cancer Inst. 48, 1393–1401 (1972).

    CAS  Google Scholar 

  10. Kalengayi, M. M. R., Ronchi, G. & Desmet, V. J. J. natn. Cancer Inst. 55, 579–588 (1975).

    Article  CAS  Google Scholar 

  11. Swann, P. F. & Magee, P. N. Biochem. J. 110, 39–47 (1968).

    Article  CAS  Google Scholar 

  12. Craddock, V. M. & Frei, J. V. Br. J. Cancer 30, 503–511 (1974).

    Article  CAS  Google Scholar 

  13. Schulte-Hermann, R. Cancer Res. 37, 166–171 (1977).

    CAS  PubMed  Google Scholar 

  14. Kaufman, D. G., Kaufman, W. K., Rice, J. M. & Wenk, M. L. Proc. Am. Ass. Cancer Res. 19, 183 (1978).

    Google Scholar 

  15. Rajalakshmi, S. & Sarma, D. S. R. Chem.-Biol. Interactions 11, 245–252 (1975).

    Article  CAS  Google Scholar 

  16. Abanobi, S. E., Mulivor, R. A., Rajalakshmi, S. & Sarma, D. S. R. Proc. Am. Ass. Cancer Res. 17, 103 (1976).

    Google Scholar 

  17. Zahner, A. J., Rajalakshmi, S. & Sarma, D. S. R. Proc. Am. Ass. Cancer Res. 18, 19 (1977).

    Google Scholar 

  18. Rutenburg, A. M. et al. J. Histochem. Cytochem. 17, 517–526 (1969).

    Article  CAS  Google Scholar 

  19. Borek, C. & Sachs, L. Proc. natn. Acad. Sci. U.S.A. 57, 1522–1527 (1967).

    Article  ADS  CAS  Google Scholar 

  20. Borek, C. & Sachs, L. Proc. natn. Acad. Sci. U.S.A. 59, 83–85 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Todaro, G. J. & Green, H. Proc. natn. Acad. Sci. U.S.A. 55, 302–308 (1966).

    Article  ADS  CAS  Google Scholar 

  22. Mondal, S. & Heilderberger, C. Proc. natn. Acad. Sci. U.S.A. 65, 219–225 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CAYAMA, E., TSUDA, H., SARMA, D. et al. Initiation of chemical carcinogenesis requires cell proliferation. Nature 275, 60–62 (1978). https://doi.org/10.1038/275060a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275060a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing