Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Guinea pig prostate is a rich source of nerve growth factor

Abstract

NERVE GROWTH FACTOR (NGF) is essential for the development of sympathetic nerve cells1. The richest known source of NGF is the submaxillary gland of the adult male mouse2, and NGF from this source has been completely purified and thoroughly characterised3. The active entity (β-subunit) is a protein comprising a dimer of identical 118-residue chains4,5. Another form of mouse NGF, the 2.5S form, has been isolated6 and shown to differ from the β entity in that some of the monomeric chains have undergone enzymatic cleavage of the amino-terminal octapeptide and carboxy-terminal arginine residues3,4,7–9. The 2.5S dimer therefore contains both 118-residue chains and shortened chains. The salivary gland of the mouse seems to be unique in that the corresponding glands of the rat, guinea pig, cow, pig, rabbit and man contain no NGF10,11. No other clearly characterised source of NGF in mammalian tissue in vivo has been reported. We now report a new, rich source of NGF–the prostate glands of the adult male guinea pig.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levi-Montalcini, R. & Angeletti, P. U. Physiol. Rev. 48, 534–569 (1968).

    Article  CAS  Google Scholar 

  2. Cohen, S. Proc. natn. Acad. Sci. U.S.A. 46, 302–311 (1960).

    Article  ADS  CAS  Google Scholar 

  3. Server, A. C. & Shooter, E. M. Adv. Protein Chem. 31, 339–409 (1977).

    Article  CAS  Google Scholar 

  4. Angeletti, R. H. & Bradshaw, R. A. Proc. natn. Acad. Sci. U.S.A. 68, 2417–2420 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Greene, L. A., Varon, S., Piltch, A. & Shooter, E. M. Neurobiology 1, 37–48 (1971).

    CAS  Google Scholar 

  6. Bocchini, V. & Angeletti, P. U. Proc. natn. Acad. Sci. U.S.A. 64, 787–794 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Moore, J. B., Mobley, W. C. & Shooter, E. M. Biochemistry 13, 833–840 (1974).

    Article  CAS  Google Scholar 

  8. Mobley, W. C., Schenker, A. & Shooter, E. M. Biochemistry 15, 5543–5552 (1976).

    Article  CAS  Google Scholar 

  9. Angeletti, R. H., Bradshaw, R. A. & Marshall, G. R. Int. J. Peptide Protein Res. 6, 321–328 (1974).

    Article  Google Scholar 

  10. Banks, B. E. C. et al. Nature 246, 503–504 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Harper, G. P., Pearce, F. L. & Vernon, C. A. (in preparation).

  12. Varon, S., Nomura, J., Perez-Polo, J. R. & Shooter, E. M. Meth. Neurochem. 3, 203–229 (1972).

    CAS  Google Scholar 

  13. Fenton, E. L. Expl Cell. Res. 59, 383–392 (1970).

    Article  CAS  Google Scholar 

  14. Pearce, F. L., Banthorpe, D. V., Cook, J. M. & Vernon, C. A. Eur. J. Biochem 32, 569–575 (1973).

    Article  CAS  Google Scholar 

  15. Bamburg, J. R., Derby, M. A. & Shooter, E. M. Neurobiology 1, 115–120 (1971).

    CAS  Google Scholar 

  16. Stoeckel, K., Gagnon, C., Guroff, G. & Thoenen, H. J. Neurochem. 26, 1207–1211 (1976).

    Article  CAS  Google Scholar 

  17. Bailey, G. S. et al. Biochim. biophys. Acta 437, 259–263 (1976).

    Article  CAS  Google Scholar 

  18. Suda, K., Barde, Y. A. & Thoenen, H. Proc. natn. Acad. Sci. U.S.A. 75, 4042–4046 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Caramia, F., Angeletti, P. U. & Levi-Montalcini, R. Endocrinology 70, 915–922 (1962).

    Article  CAS  Google Scholar 

  20. Bueker, E. D., Weis, P. & Schenkein, I. Proc. Soc. exp. Biol. Med. 118, 204–207 (1965).

    Article  CAS  Google Scholar 

  21. Goldstein, M. N. & Burdman, J. A. Anat. Rec. 151, 199–208 (1965).

    Article  CAS  Google Scholar 

  22. de Champlain, J., Malmfors, T., Olson, L. & Sachs, C. Acta physiol. scand. 80, 276–288 (1970).

    Article  CAS  Google Scholar 

  23. Owman, C., Sjöberg, N. O. & Swedin, G. Z. Zellforsch. 116, 319–341 (1971).

    Article  CAS  Google Scholar 

  24. Kato, D. Yonaga acta medica 16, 172–175 (1973).

    CAS  Google Scholar 

  25. Levi-Montalcini, R. Harvey Lect. 60, 217–259 (1966).

    CAS  PubMed  Google Scholar 

  26. Cohen, S. Natn. Cancer Inst. Monogr. 13, 13–37 (1964).

    CAS  Google Scholar 

  27. Cohen, S. Devl Biol. 12, 394–407 (1965).

    Article  CAS  Google Scholar 

  28. Cohen, S. & Taylor, J. M. Macromolecules Regulating Growth and Development, 25–42 (Academic, New York, 1974).

    Book  Google Scholar 

  29. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  30. Studier, F. W. J. molec. Biol. 79, 237–248 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HARPER, G., BARDE, Y., BURNSTOCK, G. et al. Guinea pig prostate is a rich source of nerve growth factor. Nature 279, 160–162 (1979). https://doi.org/10.1038/279160a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279160a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing