Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix

Abstract

The distribution of closed unknotted polymer chains over the writhing number is calculated by the Monte-Carlo method. For circular duplex DNA the variance of the distribution equals approximately half the observed variance of equilibrium distribution over the linking number. The balance which arises from fluctuations in DNA twisting makes it possible to estimate the torsional stiffness of the double helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Namoradze, N. Z., Goryunov, A. N. & Birshtein, T. M. Biophys. Chem. 7, 59–70 (1977).

    Article  CAS  Google Scholar 

  2. Sussman, J. L. & Trifonov, E. N. Proc. natn. Acad. Sci. U.S.A. 75, 103–107 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Levitt, M. Proc. natn. Acad. Sci. U.S.A. 75, 640–644 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Zhurkin, V. B., Lysov, Y. P. & Ivanov, V. I. Nucleic Acids Res. 6, 1081–1096 (1979).

    Article  CAS  Google Scholar 

  5. Riemer, S. C. & Bloomfield, V. A. Biopolymers 17, 785–794 (1978).

    Article  CAS  Google Scholar 

  6. Camerini-Otero, R. & Felsenfeld, G. Nucleic Acids Res. 4, 1159–1181 (1977).

    Article  CAS  Google Scholar 

  7. Camerini-Otero, R. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 75, 1708–1712 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, London, 1959).

    MATH  Google Scholar 

  9. Bresler, S. E. & Frenkel, Y. I. Zh. Eksp. Teor. Fiz. USSR 9, 1094–1106 (1939).

    CAS  Google Scholar 

  10. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Addison-Wesley, Reading, Mass., 1958).

    MATH  Google Scholar 

  11. Schellman, J. A. Biopolymers 13, 217–226 (1974).

    Article  CAS  Google Scholar 

  12. Yamakawa, B. & Fujii, M. Macromolecules 7, 125–135; 649–654 (1974).

    ADS  Google Scholar 

  13. Record, M. T. Jr., Woodbury, C. P. & Inman, R. B. Biopolymers 14, 393–408 (1975).

    Article  CAS  Google Scholar 

  14. Godfrey, J. E. & Eisenberg, H. Biophys. Chem. 5, 301–318 (1976).

    Article  CAS  Google Scholar 

  15. Jolly, D. & Eisenberg, H. Biopolymers 15, 61–95 (1976).

    Article  CAS  Google Scholar 

  16. Kovacic, R. T. & van Holde, K. E. Biochemistry 16, 1490–1498 (1976).

    Article  Google Scholar 

  17. Le Bret, M. Biopolymers 17, 1939–1955 (1978).

    Article  CAS  Google Scholar 

  18. Belintsev, B. N., Gagua, A. V. & Nedospasov, S. A. Nucleic Acids Res. 6, 983–992 (1979).

    Article  CAS  Google Scholar 

  19. Depew, R. E. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 72, 4275–4279 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Pulleyblank, D. F., Shure, M., Tang, D., Vinograd, J. & Vosberg, H.-P. Proc. natn. Acad. Sci. U.S.A. 72, 4280–4284 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Benham, C. J. J. molec. Biol. 123, 361–370 (1978).

    Article  CAS  Google Scholar 

  22. Calugareanu, G. Rev. Math. pure appl. 4, 5–20 (1959).

    Google Scholar 

  23. Calugareanu, G. Czech. Math. J. 11, 588–625 (1961).

    MathSciNet  Google Scholar 

  24. Pohl, W. F. Am. J. Math. 90, 1321–1345 (1968).

    Article  Google Scholar 

  25. White, J. H. Am. J. Math. 91, 693–728 (1969).

    Article  Google Scholar 

  26. Fuller, F. B. Proc. natn. Acad. Sci. U.S.A. 68, 815–819 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Fuller, F. B. Proc. natn. Acad. Sci. U.S.A. 75, 3557–3561 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Crick, F. H. C. Proc. natn. Acad. Sci. U.S.A. 73, 2639–2643 (1976).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Shure, M., Pulleyblank, D. E. & Vinograd, J. Nucleic Acids Res. 4, 1183–1205 (1977).

    Article  CAS  Google Scholar 

  30. Frank-Kamenetskii, M. D., Lukashin, A. V. & Vologodskii, A. V. Nature 258, 398–402 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Vologodskii, A. V., Lukashin, A. V., Frank-Kamenetskii, M. D. & Anshelevich, V. V. Sov. Phys.–JETP 39, 1059–1063 (1974).

    ADS  Google Scholar 

  32. Frank-Kamenetskii, M. D. & Lazurkin, Y. S. A. Rev. Biophys. Bioengng 3, 127–150 (1974).

    Article  CAS  Google Scholar 

  33. Lukashin, A. V., Vologodskii, A. V., Frank-Kamenetskii, M. D. & Lyubchenko, Y. L. J. molec. Biol. 108, 665–682 (1976).

    Article  CAS  Google Scholar 

  34. Bauer, W. A. Rev. Biophys. Bioengng 7, 287–313 (1978).

    Article  CAS  Google Scholar 

  35. Zhurkin, V. B., Lysov, Y. P. & Ivanov, V. I. Biopolymers 17, 377–412 (1978).

    Article  CAS  Google Scholar 

  36. Hogan, M., Dattagupta, N. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 75, 195–199 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vologodskii, A., Anshelevich, V., Lukashin, A. et al. Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature 280, 294–298 (1979). https://doi.org/10.1038/280294a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280294a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing