Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture

Abstract

Cholesterol is a primary component of the mammalian cell plasma membrane. Although its function is unknown, it may be of major importance in maintaining membrane fluidity and rigidity1. In artificial membrane systems, the addition of cholesterol results in a condensing effect—thickening the bilayer and inducing higher order in the acyl chains of the phospholipids2. Permeability profiles indicate that the addition of cholesterol into egg–lecithin bilayers increases the half-time of solute transport3. In addition, decreased amounts of sterol in the membrane increase glucose permeability, and, in L cells, increase the transport of rubidium4,5. These studies suggest a role for cholesterol in changing the physical characteristics of the membrane resulting in the alteration of membrane permeability. We now provide evidence that cholesterol may act, presumably via changes in physical membrane properties, with yet another biological consequence; regulating the survival sensitivity of mammalian cells to hyperthermic temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chapman, D. Q. Rev. Biophys. 8, 185–235 (1975).

    Article  CAS  Google Scholar 

  2. Stockton, G. W. & Smith, I. C. P. Chem. Phys. Lipids 17, 251–263 (1976).

    Article  CAS  Google Scholar 

  3. Muccillo, S. S., Marsch, D. & Smith, I. C. P. Arch. Biochem. Biophys. 172, 1–11 (1976).

    Article  Google Scholar 

  4. Demel, R. A. & De Kruijff, B. Biochim. biophys. Acta 457, 109–132 (1976).

    Article  CAS  Google Scholar 

  5. Heiniger, H., Kandutsch, A. & Chen, H. Nature 263, 515–517 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Sinensky, M. Proc. natn Acad. Sci. U.S.A. 71, 522–525 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Yatvin, M. B. Int. J. radiat. Biol. 32, 513–521 (1977).

    CAS  Google Scholar 

  8. Lehninger, A. L. Biochemistry (Worth, New York, 1975).

    Google Scholar 

  9. Gerner, E. W. & Russell, D. H. Cancer Res. 37, 482–489 (1977).

    CAS  PubMed  Google Scholar 

  10. Gerner, E. W., Cress, A. E., Stickney, D. G., Holmes, D. K. & Culver, P. C. Ann. N.Y. Acad. Sci. (in the press).

  11. Connor, W. G., Gerner, E. W., Miller, R. C. & Boone, M. L. M. Radiology 123, 497–503 (1977).

    Article  CAS  Google Scholar 

  12. Gerner, E. W. & Schneider, M. J. Nature 256, 500–502 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Gerner, E. W., Boone, R., Connor, W. G., Hicks, J. A. & Boone, M. L. M. Cancer Res. 36, 1035–1040 (1976).

    CAS  PubMed  Google Scholar 

  14. Glick, D., Fell, B. F. & Sjølin, K. Analyt. Chem. 36, 1119–1121 (1964).

    Article  CAS  Google Scholar 

  15. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  16. Raheja, R. K., Kaur, C., Singh, A. & Bhatia, I. S. J. Lipid Res. 14, 695–697 (1973).

    CAS  PubMed  Google Scholar 

  17. Macgee, J. & Allen, K. G. J. Chromatogr. 100, 35 (1974).

    Article  CAS  Google Scholar 

  18. Rothblat, G. H., Boyd, R. & Deal, D. Expl Cell Res. 67, 436–440 (1971).

    Article  CAS  Google Scholar 

  19. Gerner, E. W., Holmes, P. W. & McCullough, J. A. Cancer Res. 39, 981–986 (1979).

    CAS  PubMed  Google Scholar 

  20. Green, C. The Biochemistry of Tumor Lipids Vol. 1 (University Park Press, Baltimore, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cress, A., Gerner, E. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Nature 283, 677–679 (1980). https://doi.org/10.1038/283677a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283677a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing