Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization

Abstract

Organic detritus passing from the sea surface through the water column to the sea floor controls nutrient regeneration, fuels benthic life and affects burial of organic carbon in the sediment record1–3. Particle trap systems have enabled the first quantification of this important process. The results suggest that the dominant mechanism of vertical transport is by rapid settling of rare large particles, most likely of faecal pellets or marine snow of the order of >200 μm in diameter, whereas the more frequent small particles have an insignificant role in vertical mass flux4–6. The ultimate source of organic detritus is biological production in surface waters of the oceans. I determine here an empirical relationship that predicts organic carbon flux at any depth in the oceans below the base of the euphotic zone as a function of the mean net primary production rate at the surface and depth-dependent consumption. Such a relationship aids in estimating rates of decay of organic matter in the water column, benthic and water column respiration of oxygen in the deep sea and burial of organic carbon in the sediment record.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea, Vol. 2 (ed. Hill, M. N.) 26–77 (Wiley, New York, 1963).

    Google Scholar 

  2. Smith, K. L. Mar. Biol. 47, 337–347 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Müller, P. J. & Suess, E. Deep-Sea Res. 26, 1347–1362 (1979).

    Article  ADS  Google Scholar 

  4. McCave, I. N. Deep-Sea Res. 22, 491–502 (1975).

    Google Scholar 

  5. Schrader, H.-J. Science 174, 55–57 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Shanks, A. L. & Trent, D. Deep-Sea Res. 27, 137–143 (1980).

    Article  ADS  Google Scholar 

  7. Wiebe, P. H., Boyd, S. H. & Winget, C. J. mar. Res. 34, 341–354 (1976).

    Google Scholar 

  8. Honjo, S. J. mar. Res. 36, 469–492 (1978); 38, 53&–97 (1980).

    CAS  Google Scholar 

  9. Hinga, K. R., Sieburth, J. & Heath, G. R. J. mar. Res. 37, 557–579 (1979).

    CAS  Google Scholar 

  10. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep-Sea Res. 26, 97–108 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Rowe, G. T. & Gardner, W. D. J. mar. Res. 37, 581–600 (1979).

    CAS  Google Scholar 

  12. Smetacek, V., von Brökel, K. & Zeitschel, Zenk, W. Mar. Biol. 47, 211–226 (1978).

    Article  Google Scholar 

  13. Iturriaga, R. Mar. Biol. 55, 157–169 (1979).

    Article  CAS  Google Scholar 

  14. Deuser, W. G. & Ross, E. H. Nature 283, 364–365 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Cobler, R. & Dymond, J. Science 209, 801–802 (1980).

    Article  ADS  CAS  Google Scholar 

  16. von Brökel, K. Abstr. IDOE int. Symp. on Coastal Upwelling, Los Angeles (1980).

  17. Rowe, G. T. Symp. on Bio-productivity of Upwelling Ecosystems, Moscow (1979).

  18. Staresinic, N. & Rowe, G. T. Abstr. IDOE int. Symp. on Coastal Upwelling, Los Angeles (1980).

  19. Zeitschel, B. Kieler Meeresforsch. 21, 55–80 (1965).

    Google Scholar 

  20. Owen, R. W. California Cooperative Oceanic Fisheries Investigations, Atlas No. 20, 98–109 (State of California, Marine Research Committee, 1974).

  21. Ryther, J. H. Science 166, 72–76 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Love, C. M. & Allen, R. M. (eds) Eastropac Atlas 10 (US Government Printing Office, Circ. 330, 1975).

  23. Menzel, D. W. & Ryther, J. H. Deep-Sea Res. 6, 351–367 (1960).

    ADS  Google Scholar 

  24. Ryther, J. H. in The Sea, Vol. 2 (ed. Hill, M. N.) 347–380. (Wiley, New York, 1963).

    Google Scholar 

  25. Guillen, O., de Mendiola, B. R. & de Rondan, R. I. Oceanography of the South Pacific (New Zealand National Committee for UNESCO, Publ. 405–418 1973).

    Google Scholar 

  26. Koblentz-Mishke, O. J., Volkovinsky, V. V. & Kabanova, J. G. Scientific Exploration of the South Pacific, (ed. Wooster, W.) 183–193. (National Academy of Sciences, Washington, 1970).

    Google Scholar 

  27. von Bodungen, B. thesis, Univ. Kiel (1975).

  28. Ryther, J. H. & Yentsch, C. S. Limnol. Oceanogr. 3, 327–335 (1958).

    Article  ADS  Google Scholar 

  29. Ryther, J. H. & Menzel, D. W. Deep-Sea Res. 6, 235–238 (1960).

    ADS  Google Scholar 

  30. Dymond, J. et al. Earth planet. Sci. Lett. (in the press).

  31. Kirchner, W. B. Limnol. Oceanogr. 20, 657–660 (1975).

    Article  ADS  Google Scholar 

  32. Brun-Cottan, J. C. J. geophys. Res. 81, 1601–1606 (1976).

    Article  ADS  Google Scholar 

  33. Lai, D. & Lerman, A. J. geophys. Res. 80, 423–430 (1975).

    Article  ADS  Google Scholar 

  34. Wollast, R. The Sea Vol. 5 (ed. Goldberg, E. D.) 369–392 (Wiley, New York, 1974).

    Google Scholar 

  35. Lai, D. Science 198, 997–1008 (1977).

    Article  ADS  Google Scholar 

  36. Honjo, S. & Roman, M. R. J. mar. Res. 36, 45–75 (1978).

    Google Scholar 

  37. Müller, P. J. & Suess, E. Deep-Sea Res. 26, 1347–1362 (1979); Colloq. int. du C.N.R.S. No. 293, 17–26 (1980).

    Article  ADS  Google Scholar 

  38. Christensen, J. P. & Packard, T. T. Deep-Sea Res. 24, 331–343 (1977).

    Article  ADS  CAS  Google Scholar 

  39. Revsbeck, N. P., Jørgensen, B. B. & Blackburn, T. H. Science 207, 1355–1356 (1980).

    Article  ADS  Google Scholar 

  40. Revsbeck, N. P., Sørensen, J., Blackburn, T. H. & Lomholt, J. P. Limnol. Oceanogr. 25, 403–411 (1980).

    Article  ADS  Google Scholar 

  41. Richards, F. A. Chem. Oceanogr. 1, 611–645 (1965).

    Google Scholar 

  42. Packard, T. T., Healy, M. L. & Richards, F. A. Limnol Oceanogr. 16, 67–70 (1971).

    Article  ADS  Google Scholar 

  43. Kroopnick, P. Deep-Sea Res. 21, 211–227 (1974).

    CAS  Google Scholar 

  44. Craig, H. J. geophys. Res. 76, 5078–5086 (1971).

    Article  ADS  CAS  Google Scholar 

  45. Carlucci, A. F. & Williams, P. M. Naturwissenschaften 65, 541–542 (1978).

    Article  ADS  Google Scholar 

  46. Williams, P. M. & Carlucci, A. F. Nature 262, 810–811 (1976).

    Article  ADS  CAS  Google Scholar 

  47. Wyrtki, K. Deep-Sea Res. 9, 11–23 (1962).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suess, E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288, 260–263 (1980). https://doi.org/10.1038/288260a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288260a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing