Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-reversal symmetry-breaking superconductivity in Sr2RuO4

Abstract

Although the properties of most superconducting materials are well described by the theory1 of Bardeen, Cooper and Schrieffer (BCS), considerable effort has been devoted to the search for exotic superconducting systems in which BCS theory does not apply. The transition to the superconducting state in conventional BCS superconductors involves the breaking of gauge symmetry only, whereby the wavefunction describing the Cooper pairs—the paired electron states responsible for superconductivity—adopt a definite phase. In contrast, a signature of an unconventional superconducting state is the breaking of additional symmetries2, which can lead to anisotropic pairing (such as the ‘d-wave’ symmetry observed in the copper oxide superconductors) and the presence of multiple superconducting phases (as seen in UPt3 and analogous behaviour in superfluid 3He; 35). Here we report muon spin-relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state in this material is characterized by the breaking of time-reversal symmetry. These results, combined with other symmetry considerations, suggest that superconductivity in Sr2RuO4 is of ‘p-wave’ (odd-parity) type, analogous to superfluid 3He.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zero-field μSR spectra measured with Pμ c in Sr2RuO4 at T = 2.1 K (circles) and T = 0.02 K (squares).
Figure 2: Zero-field (ZF) relaxation rate Λ for the initial muon spin polarization c (top) and c (bottom).

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Lee, D. M. The extraordinary phases of liquid 3He. Rev. Mod. Phys. 69, 645–665 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Osheroff, D. D. Superfluidity in 3He: discovery and understanding. Rev. Mod. Phys. 69, 667–681 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Richardson, R. C. The Pomeranchuk effect. Rev. Mod. Phys. 69, 683–690 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Randall, J. J. & Ward, R. J. The preparation of some ternary oxides of the platinum metals. J. Am. Chem. Soc. 81, 2629–2631 (1959).

    Article  CAS  Google Scholar 

  7. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Mackenzie, A. P. et al. Quantum oscillations in the layered perovskite superconductor Sr2RuO4. Phys. Rev. Lett. 76, 3786–3789 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Vollhardt, D. & Wölfle, P. The Superfluid Phases of Helium 3 (Taylor & Francis, London, (1990)).

    Book  Google Scholar 

  11. Rice, T. M. & Sigrist, M. Sr2RuO4: an electronic analogue of 3He? J. Phys. Condens. Matter 7, 643–648 (1995).

    Article  ADS  Google Scholar 

  12. Baskaran, G. Why is Sr2RuO4not a high Tcsuperconductor? Electron correlation, Hund's coupling and p-wave instabiity. Physica B 223 & 224, 490–495 (1996).

    Article  Google Scholar 

  13. Nishizaki, S., Maeno, Y., Farner, S., Ikeda, S. & Fujita, T. Pairing symmetry of superconducting Sr2RuO4from specific heat measurements. Physica C 282–287;, 1413–1414 (1997).

    Article  ADS  Google Scholar 

  14. Ishida, K. et al. Anisotropic pairing in superconducting Sr2RuO4: Ru NMR and NQR studies. Phys. Rev. B 56, R505–R508 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Sigrist, M. & Zhitomirsky, M. E. Pairing symmetry of the superconductor Sr2RuO4. J. Phys. Soc. Jpn 65, 3452–3455 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Machida, K., Ozaki, M. & Ohmi, T. Odd-parity pairing superconductivity under tetragonal symmetry—possible application to Sr2RuO4. J. Phys. Soc. Jpn 65, 3720–3723 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Agterberg, D. F., Rice, T. M. & Sigrist, M. Orbital dependent superconductivity in Sr2RuO4. Phys. Rev. Lett. 78, 3374–3377 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Brewer, J. H. in Encyclopedia of Applied Physics Vol. 11(ed. Trigg, G. L.) 23 (VCH, New York, (1994)).

    Google Scholar 

  19. Kiefl, R. F. et al. Search for anomalous internal magnetic fields in high-Tcsuperconductors as evidence for broken time-reversal symmetry. Phys. Rev. Lett. 64, 2082–2085 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Luke, G. M. et al. Muon spin relaxation in UPt3. Phys. Rev. Lett. 71, 1466–1469 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Heffner, R. H. et al. New phase diagram for (U,TH)Be13: a muon-spin-resonance and Hc1study. Phys. Rev. Lett. 65, 2816–2819 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Heffner, R. H. & Norman, M. R. Heavy fermion superconductivity. Comments Condens. Matter Phys. 17, 361–408 (1996).

    CAS  Google Scholar 

  23. Uemura, Y. J., Yamazaki, T., Harshman, D. R., Senba, M. & Ansaldo, E. J. Muon-spin relaxation in AuFe and CuMn spin glasses. Phys. Rev. B 31, 546–563 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Machida, D. Agterberg and E. M. Forgan for discussions. Research at Columbia was supported by NSF and NEDO. Y.M. and Z.Q.M. thank CREST of the Japan Science and Technology Corporation for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Luke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luke, G., Fudamoto, Y., Kojima, K. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998). https://doi.org/10.1038/29038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29038

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing