Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical organization of neurones accumulating 3H-GABA in visual cortex of rhesus monkey

Abstract

Electrophysiological and pharmacological studies1–6 indicate that the specific responses of most visual cortical neurones depend on intracortical γ-aminobutyric acid (GABA)-mediated inhibitory processes. GABAergic interneurones have been visualized in all layers of the mammalian cerebral cortex by immunocytochemical methods7,8 and by high-affinity uptake of exogenous 3H-GABA9–11. It is recognized that GABA is synthesized and specifically accumulated by aspinous and sparsely spinous stellate cells, but there is no evidence available to indicate whether the laminar distribution of these cells and their axonal projections are related to the known role of GABAergic inhibitory processes in the generation of responses in visual cortical cells. It would therefore be of value to delineate the intracortical projection of the axons of different types of GABA-releasing neurones in regions of cortex where the receptive field properties of the neurones, and their modification by GABA antagonists, are well known. The selective high-affinity uptake of labelled GABA has been useful in delineating GABAergic systems12: recently, it has been shown that exo-genous 3H-GABA is specifically taken up and transported retrogradely by axons of neurones thought to be GABA-ergic13,14. Using microinjections of 3H-GABA into different layers of the monkey visual cortex, we have examined the pattern of labelled neurones. We report here a bimodal distribution of GABA-accumulating neurones after injection into layers V and VI, with one group of neurones around the injection site and the other directly above, in layers II and III. We provide evidence that the latter neurones are non-pyramidal cells, probably labelled by retrograde axonal transport from the deep layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose, D. & Blakemore, C. Nature 249, 375–377 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Sillito, A. M. J. Physiol., Lond. 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  3. Sillito, A. M. J. Physiol., Lond. 271, 699–720 (1977).

    Article  CAS  Google Scholar 

  4. Sillito, A. M. J. PhysioL., Lond. 289, 33–53 (1979).

    Article  CAS  Google Scholar 

  5. Sillito, A. M., Kemp, J. A., Milson, J. A. & Berardi, N. Brain Res. 194, 517–520 (1980).

    Article  CAS  Google Scholar 

  6. Tsumoto, T., Eckart, W. & Creutzfeldt, O. D. Expl Brain Res. 34, 351–365 (1979).

    Article  CAS  Google Scholar 

  7. Hendrickson, A. E., Hunt, S. P. & Wu, J. Y. Nature 292, 605–607 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Riback, C. E. J. Nèurocytol. 7, 461–479 (1978).

    Article  Google Scholar 

  9. Chronwall, B. & Wolff, J. R. J. comp. Neurol. 190, 187–208 (1980).

    Article  CAS  Google Scholar 

  10. Hökfelt, T. & Ljungdahl, A. Expl Brain Res. 14, 354–362 (1972).

    Google Scholar 

  11. Somogyi, P., Freund, T. F., Halász, N. & Kisvárday, Z. F. Brain Res. (in the press).

  12. Iversen, L. L. in Handbook of Psychopharmacology Vol. 9 (eds Iversen, L. L., Iversen, S. D. & Snyder, S. H.) 41–68 (Plenum, New York, 1978).

    Google Scholar 

  13. Streit, P. J. comp. Neurol. 191, 429–463 (1980).

    Article  CAS  Google Scholar 

  14. Streit, P., Knecht, E. & Cuénod, M. Science 205, 306–307 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Jaffe, E. H. & Cuello, A. C. Brain Res. 186, 232–238 (1980).

    Article  CAS  Google Scholar 

  16. Somogyi, P., Hodgson, A. J. & Smith, A. D. Neuroscience 4, 1805–1852 (1979).

    Article  CAS  Google Scholar 

  17. Lund, J. S. & Boothe, R. G. J. comp. Neurol. 159, 305–334 (1975).

    Article  Google Scholar 

  18. Fisken, R. A., Garey, L. J. & Powell, T. P. S. Phil Trans. R. Soc. B272, 487–536 (1975).

    Article  CAS  Google Scholar 

  19. Sloper, J. J., Hiorns, R. W. & Powell, T. P. S. Phil. Trans. R. Soc. B285, 141–173 (1979).

    Article  CAS  Google Scholar 

  20. Davis, T. L. & Sterling, P. J. comp. Neurol. 188, 599–627 (1979).

    Article  CAS  Google Scholar 

  21. LeVay, S. J. comp. Neurol. 150, 53–86 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Ramon y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés Vol. 2 (Maloine, Paris, 1911).

  23. Valverde, F. Anat. Embryol. 154, 305–334 (1978).

    Article  CAS  Google Scholar 

  24. Szentágothai, J. Proc. R. Soc. B201, 219–248 (1978).

    ADS  Google Scholar 

  25. Somogyi, P. & Cowey, A. J. comp. Neurol. 195, 547–566 (1981).

    Article  CAS  Google Scholar 

  26. Ribak, C. E., Harris, A. B., Vaughn, J. E. & Roberts, E. Science 205, 211–213 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Hubel, D. H. & Wiesel, T. N. Proc. R. Soc. B198, 1–59 (1977).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somogyi, P., Cowey, A., Halász, N. et al. Vertical organization of neurones accumulating 3H-GABA in visual cortex of rhesus monkey. Nature 294, 761–763 (1981). https://doi.org/10.1038/294761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294761a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing