Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A simple ice sheet model yields realistic 100 kyr glacial cycles

Abstract

Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Birchfield, G. E., Weertman, J. & Lunde, A. T. Quat. Res. 15, 126–142 (1981).

    Article  Google Scholar 

  2. Oerlemans, J. Nature 287, 430–432 (1980).

    Article  ADS  Google Scholar 

  3. Andrews, J. T. Arct. Alp. Res. 5, 185–199 (1973).

    Article  Google Scholar 

  4. Hughes, T., Denton, G. H. & Grosswald, M. G. Nature 266, 596–602 (1977).

    Article  ADS  Google Scholar 

  5. Berger, A. L. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  6. Walcott, R. I. A. Rev. Earth planet. Sci. 1, 15–37 (1973).

    Article  ADS  Google Scholar 

  7. Cathles, L. M. The Viscosity of the Earth's Mantle, 386 (Princeton, New Jersey, 1975).

    Google Scholar 

  8. Peltier, W. R. A. Rev. Earth planet. Sci. 9, 199–225 (1981).

    Article  ADS  Google Scholar 

  9. Ghil, M. & Le Treut, H. J. geophys. Res. 86, 5262–5270 (1981).

    Article  ADS  Google Scholar 

  10. Budd, W. F. I.A.H.S. Publ. No. 131, 441–471 (1981).

  11. Weertman, J. Nature 261, 17–20 (1976).

    Article  ADS  Google Scholar 

  12. Pollard, D., Ingersoll, A. P. & Lockwood, J. G. Tellus 32, 301–319 (1980).

    ADS  Google Scholar 

  13. Chappell, J. & Veeh, H. H. Bull. geol. Soc. Am. 89, 356–368 (1978).

    Article  CAS  Google Scholar 

  14. Andrews, J. T. & Mahaffy, M. A. W. Quat. Res. 6, 167–183 (1976).

    Article  Google Scholar 

  15. Budd, W. F. and Smith, I. N. I.A.H.S. Publ. No. 131, 369–409 (1981).

  16. Birchfield, G. E., Weertman, J. & Lunde, A. T. J. atmos. Sci. (in the press).

  17. Walcott, R. I. Rev. Geophys. Space Phys. 10, 849–884 (1972).

    Article  ADS  Google Scholar 

  18. Ruddiman, W. F. & McIntyre, A. Quat. Res. 16, 125–134 (1981).

    Article  Google Scholar 

  19. Meier, M. F. et al. U.S. geol. Surv. Open-File Rep. 80–582, 47 (1980).

  20. Emiliani, C. Earth planet. Sci. Lett. 37, 349–352 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Williams, L. D. Arct. Alp. Res. 11, 443–456 (1979).

    Article  Google Scholar 

  22. Adam, D. P. Quat. Res. 5, 161–171 (1975).

    Article  Google Scholar 

  23. Ruddiman, W. F., Molfino, B., Esmay, A. & Pokras, E. Climatic Change 3, 65–87 (1980).

    Article  ADS  Google Scholar 

  24. Paterson, W. S. B., Geophys. Space Phys. 10, 885–917 (1972).

    Article  ADS  Google Scholar 

  25. Hughes, T. Rev. Geophys. Space Phys. 15, 1–46 (1977).

    Article  ADS  Google Scholar 

  26. Oerlemans, J. Quat. Res. 15, 77–85 (1981).

    Article  Google Scholar 

  27. Turcotte, D. L. Adv. Geophys. 21, 51–86 (1979).

    Article  ADS  Google Scholar 

  28. Burgers, J. M. & Collette, B. J. Proc. K. ned. Akad. Wet. B 61, 221–241 (1958).

    Google Scholar 

  29. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, D. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296, 334–338 (1982). https://doi.org/10.1038/296334a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296334a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing