Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons

Abstract

The scanning model of translation initiation is a coherent description of how eukaryotic ribosomes reach the initiation codon after being recruited to the capped 5′ end of messenger RNA. Five eukaryotic initiation factors (eIF 2, 3, 4A, 4B and 4F) with established functions have been assumed to be sufficient to mediate this process. Here we report that eIF1 and eIF1A are also both essential for translation initiation. In their absence, 43S ribosomal preinitiation complexes incubated with ATP, eIF4A, eIF4B and eIF4F bind exclusively to the cap-proximal region but are unable to reach the initiation codon. Individually, eIF1A enhances formation of this cap-proximal complex, and eIF1 weakly promotes formation of a 48S ribosomal complex at the initiation codon. These proteins act synergistically to mediate assembly of ribosomal initiation complexes at the initiation codon and dissociate aberrant complexes from the mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition and purification of proteins used in translation initiation.
Figure 2: Assembly and toeprint analysis of ribosomal complexes on β-globin mRNA.
Figure 3: Initiation-factor dependence of cap-mediated 48S complex formation.
Figure 4: Stability of complex I.
Figure 5: Assembly and toeprint analysis of ribosomal complexes on EMCV and CSFV mRNAs.

Similar content being viewed by others

References

  1. Kozak, M. How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell 15, 1109–1123 (1978).

    Article  CAS  Google Scholar 

  2. Kozak, M. The scanning model for translation: An update. J. Cell. Biol. 108, 229–241 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Merrick, W. C. & Hershey, J. W. B. in Translational Control (eds Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 31–70 (Cold Spring Harbor Laboratory Press, NY, (1996)).

  4. Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16, 6859–6869 (1996).

    Article  CAS  Google Scholar 

  5. Pestova, T. V., Shatsky, I. N. & Hellen, C. U. T. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 16, 6870–6878 (1996).

    Article  CAS  Google Scholar 

  6. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. T. Aprokaryotic-like mode of binding of cytoplasmic eukaryotic ribosomes to the initiation codon during internal initiation of translation of Hepatitis C and Classical Swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).

    Article  CAS  Google Scholar 

  7. Anthony, D. D. & Merrick, W. C. Analysis of 40S and 80S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J. Biol. Chem. 267, 1554–1562 (1992).

    CAS  PubMed  Google Scholar 

  8. Dever, T. E. et al. Determination of the amino acid sequence of rabbit, human, and wheat germ protein synthesis factor eIF-4C by cloning and chemical sequencing. J. Biol. Chem. 269, 3212–3218 (1994).

    CAS  PubMed  Google Scholar 

  9. Fields, C. & Adams, M. D. Expressed sequence tags identify a human isolog of the sui1 translation initiation factor. Biochem. Biophys. Res. Commun. 198, 288–291 (1994).

    Article  CAS  Google Scholar 

  10. Kasperaitis, M. A. M., Voorma, H. O. & Thomas, A. A. M. The partial amino acid sequence of eukaryotic translation initiation factor 1 and its similarity to yeast initiation factor sui1. FEBS Lett. 365, 47–50 (1995).

    Article  CAS  Google Scholar 

  11. Kaminski, A., Howell, M. T. & Jackson, R. J. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 9, 3753–3759 (1990).

    Article  CAS  Google Scholar 

  12. Kemper, W. M., Berry, K. W. & Merrick, W. C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Bα and M2Bβ. J. Biol. Chem. 251, 5551–5557 (1976).

    CAS  PubMed  Google Scholar 

  13. Schreier, M. H., Erni, B. & Staehelin, T. Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J. Mol. Biol. 116, 727–753 (1977).

    Article  CAS  Google Scholar 

  14. Trachsel, H., Erni, B., Schreier, M. H. & Staehelin, T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767 (1977).

    Article  CAS  Google Scholar 

  15. Benne, R. & Hershey, J. W. B. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087 (1978).

    CAS  PubMed  Google Scholar 

  16. Thomas, A., Goumans, H., Voorma, H. O. & Benne, R. The mechanism of action of eukaryotic initiation factor 4C in protein synthesis. Eur. J. Biochem. 107, 39–45 (1980).

    Article  CAS  Google Scholar 

  17. Thomas, A., Spaan, W., van Steeg, H., Voorma, H. O. & Benne, R. Mode of action of protein synthesis initiation factor eIF-1 from rabbit reticulocytes. FEBS Lett. 116, 67–71 (1980).

    Article  CAS  Google Scholar 

  18. Chaudhuri, J., Si, K. & Maitra, U. Function of eukaryotic translation initiation factor 1A (eIF1) (formerly called eIF-4C) in initiation of protein synthesis. J. Biol. Chem. 272, 7883–7891 (1997).

    Article  CAS  Google Scholar 

  19. Yoon, H. & Donahue, T. F. The sui1 suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAMeti recognition of the start codon. Mol. Cell. Biol. 12, 248–260 (1992).

    Article  CAS  Google Scholar 

  20. Wei, C.-L., MacMillan, S. E. & Hershey, J. W. B. Characterization of yeast translation initiation factor 1A and cloning of its essential gene. J. Biol. Chem. 270, 5764–5771 (1995).

    Article  CAS  Google Scholar 

  21. Wei, C.- & perio, C.- Kainuma, M. & Hershey, J. W. B. Protein synthesis initiation factor eIF-1A is a moderately abundant RNA-binding protein. J. Biol. Chem. 270, 22788–22794 (1995).

    Article  CAS  Google Scholar 

  22. Chen, C.-Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translation apparatus on circular RNAs. Science 268, 415–417 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Jackson, R. J. in Translational Control (eds Hershey, J. W. B., Mathews, M. B. & Sonenberg, N.) 71–112 (Cold Spring Harbor Laboratory Press, NY, (1996)).

  24. Cui, Y., Dinman, J. D., Kinzy, T. G. & Peltz, S. W. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol. Cell. Biol. 18, 1506–1516 (1998).

    Article  CAS  Google Scholar 

  25. Evstafieva, A. G., Ugarova, T. Y., Chernov, B. K. & Shatsky, I. N. Acomplex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 665–671 (1991).

  26. Hellen, C. U. T. et al. Acytoplasmic 57kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl Acad. Sci. USA 90, 7642–7646 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Merrick and N. Sonenberg for discussion, L. Siconolfi-Baez for sequencing the eIF1 and eIF1A proteins, and H.-P. Vornlocher and J. W. B. Hershey for the pT7-7-1A plasmid. These studies were supported by grants from the NIH (C.U.T.H. and S.I.B.) and the NSF (C.U.T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Pestova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestova, T., Borukhov, S. & Hellen, C. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998). https://doi.org/10.1038/29703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29703

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing