Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for hydrogen bonding of bound dioxygen to the distal histidine of oxycobalt myoglobin and haemoglobin

Abstract

The origin of the differences in oxygen binding energy in various haemoglobins and myoglobins has long been debated. Perutz1 proposed that the haem-coordinated histidine (proximal histidine) strains the haem iron in low affinity globins but relaxes it in high affinity globins. The existence of such tension in T-structure deoxyhaemoglobin (deoxyHb) was recently confirmed by electron paramagnetic resonance (EPR)2,3, resonance Raman4,5 and NMR6 spectroscopy. Although its contribution to the free energy of cooperativity is insignificant in the deoxy state, the tension at the haem is considered to be 1 kcal mol−1 for the ligated form in which the haem iron moves into the porphyrin plane7. The remaining free energy is probably stored in other parts of the molecule. Therefore, a study of the stabilization mechanisms of the oxygenated form became increasingly important. A hydrogen bond between the bound oxygen and the distal histidine has been proposed by Pauling8; this would be expected to stabilize the oxy form of the protein and could contribute to the regulation of the oxygen affinity through the oxygen dissociation rate. A series of EPR and functional studies on various cobalt-substituted monomeric haemoglobins and myoglobins suggested the presence of such hydrogen bonding8–12 and it has recently been established in crystals of oxy iron myoglobin (oxyFeMb)13 and in oxyhaemoglobin14. Here we present resonance Raman spectra of the oxy forms of cobalt–porphyrin-substituted myoglobin and haemoglobin (CoMb and CoHb) recorded in buffered H2O and D2O solutions at 406.7 nm excitation. Only the Raman lines corresponding to the O—O stretching mode of the bound oxygen15, appearing near 1,130 cm−1, are shifted (2–5 cm−1) on replacement of H2O by D2O; no other vibrations, including the Co—O2 stretching mode, exhibit any frequency shifts. This indicates that the bound oxygen in oxyCoMb and in both subunits of oxyCoHb interacts with the adjacent exchangeable proton, and confirms the formation of a hydrogen bond between the bound oxygen and the distal histidine9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perutz, M. F. Nature 228, 726–734 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ikeda-Saito, M., Yamamoto, H. & Yonetani, T. J. biol. Chem. 252, 8639–8644 (1977).

    CAS  PubMed  Google Scholar 

  3. Inubushi, T., Ikeda-Saito, M. & Yonetani, T. in Hemoglobin and Oxygen Binding (ed. Ho, C.) 199–204 (Elsevier, New York, 1982).

    Book  Google Scholar 

  4. Nagai, K. & Kitagawa, T. Proc. natn. Acad, Sci. U.S.A. 77, 2033–2037 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Ondrias, M. R., Rousseau, D. L. & Simon, S. R. Science 213, 657–659 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Nagai, K. & LaMar, G. N. Biochemistry (in the press).

  7. Perutz, M. F. et al. Biochemistry 17, 3640–3661 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Pauling, L. Nature 203, 182–183 (1964).

    Article  ADS  CAS  Google Scholar 

  9. Yonetani, T., Yamamoto, H. & Iizuka, T. J. biol. Chem. 249, 2168–2174 (1974).

    CAS  PubMed  Google Scholar 

  10. Ikeda-Saito, M., Iizuka, T., Yamamoto, H., Kayne, T. J. & Yonetani, T. J. biol. Chem. 252, 4882–4887 (1977).

    CAS  PubMed  Google Scholar 

  11. Ikeda-Saito, M., Brunori, M. & Yonetani, T. Biochim. biophys. Acta 533, 173–180 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda-Saito, M., Hori, H., Inbushi, T. & Yonetani, T. J. biol. Chem. 256, 10267–10271 (1981).

    CAS  PubMed  Google Scholar 

  13. Phillips, S. V. E. & Schoenborn, B. P. Nature 292, 81–82 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Schaanan, B. Nature 296, 683–684 (1982).

    Article  ADS  Google Scholar 

  15. Tsubaki, M. & Yu, N. T. Proc. natn. Acad. Sci. U.S.A. 78, 3581–3585 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Barlow, C. H., Maxwell, J. C., Wallace, W. J. & Caughey, W. S. Biochem. biophys. Res. Commun. 55, 91–95 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Yonetani, T., Yamamoto, H. & Woodrow, G. V. J. biol. Chem. 249, 682–690 (1974).

    CAS  PubMed  Google Scholar 

  18. Rousseau, D. L. J. Raman Spectrosc. 10, 94–99 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Tomita, S. & Riggs, A. J. biol. Chem. 245, 3104–3109 (1970).

    CAS  PubMed  Google Scholar 

  20. Petsko, G. A., Rose, D., Tsernoglou, D., Ikeda-Saito, M. & Yonetani, T. in Frontiers of Biological Energetics (eds Dutton, P. L., Leigh, J. S. & Scarpa, A.) 1011–1016 (Academic, New York, 1978).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, T., Ondrias, M., Rousseau, D. et al. Evidence for hydrogen bonding of bound dioxygen to the distal histidine of oxycobalt myoglobin and haemoglobin. Nature 298, 869–871 (1982). https://doi.org/10.1038/298869a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298869a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing