Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intron–exon splice junctions map at protein surfaces

Abstract

There have been several suggested explanations for the presence of noncoding intervening sequences in many eukaryotic structural genes. They may be examples of ‘selfish DNA’1,2, conferring little phenotypic advantage, or they may have some importance in gene expression and/or evolution. It has been suggested that each exon (coding sequence) may represent a structural or functional unit of the encoded protein3,4, for which there is good evidence in the case of immunoglobulin7 and haemoglobin8,9 genes. Exon modification, duplication and recombination may thus be general mechanisms for the rapid evolution of eukaryotic structural genes. In many cases, however, it is not apparent that an exon corresponds to some specific feature of the encoded protein10,11. We describe here evidence that intron–exon junctions usually map to amino acid residues located at the protein surface, suggesting a restriction on the permitted positions of introns within a gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doolittle, W. F. & Sapienza, C. Nature 284, 601–603 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Orgel, L. S. & Crick, F. H. C. Nature 284, 604–607 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Blake, C. C. F. Nature, 273, 267 (1978); 277, 598 (1979).

    Article  ADS  Google Scholar 

  5. Tonegawa, S., Maxam, A., Tizard, R., Bernard, O & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 75, 1485–1489 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Sakano, H. et al. Nature 277, 627–633 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Bernard, O., Hozumi, N. & Tonegawa, S. Cell 15, 1133–1144 (1978).

    Article  CAS  Google Scholar 

  8. Craik, C. S., Buchman, S. R. & Beychok, S. Proc. natn. Acad. Sci. U.S.A. 77, 1384–1388 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Craik, C. S., Buchman, S. R. & Beychok, S. Nature 291, 87–90 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Stein, I. P., Catterall, J. F., Kristo, P., Means, A. R. & O'Malley, B. W. Cell 21, 681–687 (1980).

    Article  CAS  Google Scholar 

  11. Quinto, C. et al. Proc. natn. Acad. Sci. U.S.A. 79, 31–35 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Janin, J. Nature 277, 491–492 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Lee, B. & Richards, F. M. J. molec. Biol. 55, 379–400 (1981).

    Article  Google Scholar 

  14. Breathnach, R., Benoist, C., O'Hara, K., Gannon, F. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 75, 4853–4857 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Sprang, S., Yang, D. & Fletterick, R. J. Nature 280, 333–335 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  17. Craik, C. S. et al. in Gene Regulation (O'Malley, B. & Fox, C. F. (1982); UCLA Symp. molec. cell. Biol. 26, (in the press).

    Google Scholar 

  18. Swanson, R. et al., J. biol. Chem. 252, 759–776 (1977).

    CAS  PubMed  Google Scholar 

  19. Amzel, L. M. & Poljak, R. J. A. Rev. Biochem. 48, 961–997 (1979).

    Article  CAS  Google Scholar 

  20. Ten Eyck, L. F. & Arnone, A. J. molec. Biol. 100, 3–29 (1976).

    Article  CAS  Google Scholar 

  21. Blake, C. C. F. et al. Nature 206, 757–763 (1965).

    Article  ADS  CAS  Google Scholar 

  22. Chambers, J. L. & Stroud, R. M. Cryst. B 35, 1861–1874 (1979).

    Google Scholar 

  23. Matthews, B. W., Sigler, P. B., Henderson, R. & Blow, D. M. Nature 214, 652–660 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Volz, K. et al. J. biol. Chem. (in the press).

  25. Lipscomb, W. N. Acc. chem. Res. 3, 81–89 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craik, C., Sprang, S., Fletterick, R. et al. Intron–exon splice junctions map at protein surfaces. Nature 299, 180–182 (1982). https://doi.org/10.1038/299180a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299180a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing