Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of cat retinal ganglion cells in relation to central pathways

Abstract

The ganglion cells of the cat retina form classes distinguishable in terms of perikaryal size1,2, dendritic morphology3 and functional properties4. Further, the axons differ in their diameters, patterns of chiasmatic crossing and in their central connections5–8. Here we define, by 3H-thymidine autoradiography, the order of production of cells of each class and relate the order of the ‘birthdates’ to the known axonal pathways. The ganglion cell classes are produced in broad waves, which overlap as cells are produced first for central then for peripheral retina. Medium-sized cells are produced before the largest cells, and small ganglion cells are produced throughout the period of cell generation. This sequence of cell production relates to the orderly arrangement of axons in the optic tract9,10, and can also be related to the rules of chiasmatic crossing observed for each ganglion cell class11–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stone, J. J. comp. Neurol. 180, 753–722 (1978).

    Google Scholar 

  2. Hughes, A. J. comp. Neurol. 197, 303–339 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Boycott, B. B. & Wässle, H. J. Physiol., Lond. 240, 397–419 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Enroth-Cugell, C. & Robson, J. G. J. Physiol. Lond. 187, 517–552 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stone, J., Dreher, B. & Leventhal, A. Brain Res. Rev. 1, 345–394 (1979).

    Article  Google Scholar 

  6. Rodieck, R. W., A. Neurosci. 2, 193–225 (1979).

    CAS  Google Scholar 

  7. Lennie, P. Vision Res. 20, 561–594 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Kelly, J. P. & Gilbert, C. D. J. comp. Neurol. 163, 65–81 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Guillery, R. W., Polley, E. H. & Torrealba, F. J. Neurosci. 2, 714–721 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Torrealba, F., Guillery, R. W., Eysel, U., Polley, E. H. & Mason, C. A. J. comp. Neurol. 211, 377–396 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Stone, J. J. comp. Neurol. 126, 585–600 (1966).

    CAS  PubMed  Google Scholar 

  12. Cooper, M. L. & Pettigrew, J. D. J. comp. Neurol. 187, 285–312 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Illing, R.-B. & Wässle, H. J. comp. Neurol. 202, 265–285 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Hickey, T. L., Whikert, D. R., Jackson, C., Hitchcock, P. & Peduzzi, J. J. Neurosci. Meth. (in the press).

  15. Polley, E. H., Walsh, C. & Hickey, T. L. Soc. Neurosci. Abstr. 7, 672 (1981).

    Google Scholar 

  16. Walsh, C., Polley, E. H. & Hickey, T. L. Anat. Rec. 202, 198A (1982).

    Google Scholar 

  17. Polley, E. H., Walsh, C. & Hickey, T. L. Invest. Ophthal. vis. Sci. Suppl. 22, 114 (1982).

    Google Scholar 

  18. Williams, R. W. & Chalupa, L. M. J. Neurosci. 2, 604–622 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kliot, M. & Shatz, C. J. Soc. Neurosci. Abstr. 8, 815 (1982).

    Google Scholar 

  20. Rogers, A. W. Techniques of Autoradiography (Elsevier, Amsterdam, 1979).

  21. Sidman, R. L. in The Structure of the Eye (ed. Smelser, G. K.) 487–506 (Academic, New York, 1961).

    Google Scholar 

  22. Stone, J., Rappaport, D. H., Williams, R. W. & Chalupa, L. Devl Brain Res. 2, 231–242 (1982).

    Article  Google Scholar 

  23. Sengelaub, D. R. & Finlay, B. Science 213 573–574 (1981).

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Lund, R. & Bunt, A. J.comp. Neurol. 165, 247–264 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Johns, P. R., Rusoff, A. C. & Dubin, M. W. J. comp. Neurol. 187, 545–556 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson, M. Brain Res. 103, 541–545 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Straznicky, K. & Gaze, R. M. J. Embryol. exp. Morph. 26, 67–79 (1971).

    CAS  PubMed  Google Scholar 

  28. Johns, P. R. J. comp. Neurol. 176, 343–358 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Easter, S. S., Rusoff, A. C. & Kish, P. E. J. Neurosci. 1, 793–811 (1981).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scholes, J. H. Nature 278, 620–624 (1979).

    Article  CAS  ADS  PubMed  Google Scholar 

  31. Gaze, R. M. & Grant, P. J. Embryol. exp. Morph. 44, 201–216 (1978).

    CAS  PubMed  Google Scholar 

  32. Herrick, C. J. J. comp. Neurol. 77, 191–353 (1942).

    Article  Google Scholar 

  33. Bunt, S. M. J. comp. Neurol. 206, 209–226 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Scott, T. M. & Lazar, G. J. Anat. 121, 485–496 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacobson, M. Brain Res. 127, 55–67 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Linden, D. C., Guillery, R. W. & Cucchiaro, J. J. comp. Neurol. 203, 189–211 (1981).

    Article  CAS  PubMed  Google Scholar 

  37. Rioch, D. McK. J. comp. Neurol. 49, 1–119 (1929).

    Article  Google Scholar 

  38. Walsh, C. & Guillery, R. W. Invest Ophthal. vis. Sci. Suppl. 22, 46 (1982).

    Google Scholar 

  39. Leventhal, A. G., Keens, J. & Tork, I. J. comp. Neurol. 204, 117–133 (1980).

    Google Scholar 

  40. Fukuda, Y. & Stone, J. J. Neurophys. 37, 749–772 (1974).

    Article  CAS  Google Scholar 

  41. Rowe, M. H. & Dreher, B. J. comp. Neurol. 204, 117–133 (1982).

    Article  CAS  PubMed  Google Scholar 

  42. Sidman, R. L. in Contemporary Research Techniques of Neuroanatomy (eds Ebbesson, S. O. E. & Nauta, W. J.) 252–274 (Springer, New York, 1970).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, C., Polley, E., Hickey, T. et al. Generation of cat retinal ganglion cells in relation to central pathways. Nature 302, 611–614 (1983). https://doi.org/10.1038/302611a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302611a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing