Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aqueous-phase source of formic acid in clouds

Abstract

The concern over the environmental effects of acidic rain has increased the interest in understanding the processes which control the acidity of cloud and rainwater1–6. In regions affected by anthropogenic emissions, H2SO4 and HNO3 are most often responsible for lowering the pH of rain below 5.6, the value water attains in equilibrium with atmospheric CO2 (ref. 7). In more remote regions, however, formic acid (HCOOH), and to a lesser extent, acetic acid (CH3COOH), have also been identified as major acidic components of rain8. These two organic acids have also been observed in the gas phase in the southwestern US9. While the sources of HNO3 and H2SO4 are at least qualitatively understood5,6,10–12, the sources of organic acids remain largely unknown. We have investigated the coupled gas- and aqueous-phase cloud chemistry of HCOOH and report here that during the daylight hours, aqueous-phase OH radical reactions can both produce and destroy HCOOH in cloud droplets and may, in fact, control the HCOOH levels in rain. Similar mechanisms may also exist for acetic and other organic acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eriksson, E. Tellus 4, 215–232 (1952).

    ADS  CAS  Google Scholar 

  2. Barret, E. & Brodin, G. Tellus 7, 251–257 (1955).

    Article  ADS  Google Scholar 

  3. Cogbill, C. V. & Likens, G. E. Water. Resour. Res. 10, 1133–1137 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Oden, S. Water, Air, Soil Pollut. 6, 137–166 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Penkett, S. A., Jones, B. M. R., Brice, K. A. & Eggleton, A. E. J. Atoms. Envir. 13, 123–137 (1979).

    Article  CAS  Google Scholar 

  6. Scott, W. D. & Hobbs, P. V. J. Atmos. Sci. 24, 54–57 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Granat, L. Tellus 24, 550–560 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Galloway, J.N., Likens, G.E., Keene, W.C. & Miller, J.M. J. geophys. Res. 87, 8771–8786 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Dawson, G. A., Farmer, J. C. & Moyers, J. L. Geophys. Res. Lett. 7, 725–728 (1982).

    Article  ADS  Google Scholar 

  10. Chameides, W. L. & Davis, D. D. Chem. Engng News 60, 38–52 (1982).

    CAS  Google Scholar 

  11. Levy, H. II Adv. Photochem. 9, 364–523 (1974).

    Google Scholar 

  12. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. J. geophy Res. 86, 7210–7254 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Chameides, W. L. & Davis, D. D. J. geophys. Res. 87, 4863–4877 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Behar, D., Czapski, G., Rabini, J., Dorfman, L. M. & Schwartz, H. A. J. phys. Chem. 74, 3209–3213 (1970).

    Article  CAS  Google Scholar 

  15. Bahnemann, D. & Hart, E. J. J. phys. Chem. 86, 252–255 (1982).

    Article  CAS  Google Scholar 

  16. Farhataziz & Ross, A. B. Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution Vol. 3 (NSRDS-DBS 59, NBS Special Publ., 1977).

  17. Wagman, D. D. et al. Selected Values of Chemical Thermodynamic Properties (NBS Technical Note 270-1, 1965).

  18. Weast, R. C. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, West Palm Beach, 1979).

  19. Galbally, I. E. J. geophys. Res. 77, 7129–7132 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Markovic, V. & Sehested, K. Proc. 3rd Tihany Symp. on Radiation Chemistry (eds Dobos, J. & Hedvig, P.) 1269–1280 (Akademai Kiado, Budapest, 1972).

    Google Scholar 

  21. Bothe, E. & Schulte-Frohlinde, D., Z. Naturforsch. 35b, 1035–1039 (1980).

    Article  Google Scholar 

  22. Nenadovic, M. T., Draganic, Z. D., Draganic, I. G. & Kidric, B. in Proc. of the 3rd Tihany Symp. on Radiation Chemistry (eds Dobos, J. & Hedvig, P.) 1269–1280 (Akademai Kiado, Budapest, 1972).

    Google Scholar 

  23. Chameides, W. L. & Tan, A. J. geophys. Res. 86, 5209–5223 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Demore, W. B. et al. JPL Publ. 82–57 (1982).

  25. Fuchs, N. A. & Sutugin, A. G. in International Reviews of Aerosol Physics and Chemistry Vol. 2 (eds Hidy, G. M. & Brock, J. R.) 1–60 (Pergamon, New York, 1971).

    Google Scholar 

  26. Su, F., Calvert, J. G. & Shaw, J. H. J. phys. Chem. 84, 239–246 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chameides, W., Davis, D. Aqueous-phase source of formic acid in clouds. Nature 304, 427–429 (1983). https://doi.org/10.1038/304427a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304427a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing