Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PML induces a novel caspase-independent death process

A Correction to this article was published on 01 May 1999

Abstract

PML nuclear bodies (NBs) are nuclear matrix-associated structures altered by viruses and oncogenes. We show here that PML overexpression induces rapid cell death, independent of de novo transcription and cell cycling. PML death involves cytoplasmic features of apoptosis in the absence of caspase-3 activation, and caspase inhibitors such as zVAD accelerate PML death. zVAD also accelerates interferon (IFN)-induced death, suggesting that PML contributes to IFN-induced apoptosis. The death effector BAX and the cdk inhibitor p27KIP1 are novel NB-associated proteins recruited by PML to these nuclear domains, whereas the acute promyelocytic leukaemia (APL) PML/RARα oncoprotein delocalizes them. Arsenic enhances targeting of PML, BAX and p27KIP1 to NBs and synergizes with PML and IFN to induce cell death. Thus, cell death susceptibility correlates with NB recruitment of NB proteins. These findings reveal a novel cell death pathway that neither requires nor induces caspase-3 activation, and suggest that NBs participate in the control of cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PML induces cell death.
Figure 2: PML-triggered death is not associated with caspase activation.
Figure 3: IFN induces zVAD-accelerated cell death.
Figure 4: BAX and p27KIP are NB antigens.
Figure 5: A model for a pivotal role of PML in cell death (ref. 40 and this paper).

Similar content being viewed by others

References

  1. LaMorte, V.J., Dyck, J.A., Ochs, R.L. & Evans, R.M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 95, 4991– 4996 (1998).

    CAS  PubMed  Google Scholar 

  2. Alcalay, M. et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol. 18, 1084–1093 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borden, K.L.B., Campbelldwyer, E.J., Carlile, G.W., Djavani, M. & Salvato, M.S. Two RING finger proteins, the oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins. J. Virol. 72, 3819–3826 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lamond, A.I. & Earnshaw, W.C. Structure and function in the nucleus. Science 280, 547– 553 (1998).

    CAS  PubMed  Google Scholar 

  5. Mu, Z.M., Chin, K.V., Liu, J.H., Lozano, G. & Chang, K.S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell. Biol. 14, 6858– 6867 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koken, M.H.M. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene 10, 1315– 1324 (1995).

    CAS  PubMed  Google Scholar 

  7. Borden, K.L.B. The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its ring domain. FEBS Lett. 418, 30–34 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, X.-F., Vallian, S., Mu, Z.-M., Hung, M.-C. & Chang, K.-S. Recombinant PML adenovirus suppresses growth and tumorigenicity of human breast cancer cells by inducing G1 cell cycle arrest and apoptosis. Oncogene 16, 1839– 1849 (1998).

    CAS  PubMed  Google Scholar 

  9. Wang, Z.G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    CAS  Google Scholar 

  10. Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565–2573 (1995).

    CAS  PubMed  Google Scholar 

  11. Gongora, C. et al. Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J. Biol. Chem. 272, 19457–19463 (1997).

    CAS  PubMed  Google Scholar 

  12. Grötzinger, T., Jensen, K. & Will, H. The interferon (IFN)-stimulated gene Sp100 promoter contains an IFN-α activation site and an imperfect IFN-stimulated response element which mediate type I IFN inducibility. J. Biol. Chem. 271, 25253–25260 (1996).

    PubMed  Google Scholar 

  13. Daniel, M.-T. et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82, 1858– 1867 (1993).

    CAS  PubMed  Google Scholar 

  14. Dyck, J.A. et al. A novel macromolecular structure is a target of the promyelocyte- retinoic acid receptor oncoprotein. Cell 76, 333–343 (1994).

    CAS  PubMed  Google Scholar 

  15. Koken, M.H.M. et al. The t(15;17) translocation alters a nuclear body in a RA-reversible fashion. EMBO J. 13, 1073– 1083 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML/RARα in acute promyelocytic leukemia cells. Cell 76, 345–356 (1994).

    CAS  PubMed  Google Scholar 

  17. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).

    CAS  PubMed  Google Scholar 

  18. Lin, R.J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811– 814 (1998).

    CAS  PubMed  Google Scholar 

  19. He, L.-Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genet. 18, 126–135 (1998).

    CAS  PubMed  Google Scholar 

  20. Quignon, F., Chen, Z. & de Thé, H., Retinoic acid and arsenic: towards oncogene targeted treatments of acute promyelocytic leukaemia. Biochim. Biophys. Acta 1333, M53–M61 (1997).

    CAS  PubMed  Google Scholar 

  21. Zhu, J. et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997).

    CAS  PubMed  Google Scholar 

  22. Muller, S., Matunis, M.J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, W.Q. & Ringertz, N. Altered distribution of the promyelocytic leukemia-associated protein is associated with cellular senescence. Cell Growth Differentiation 8, 513– 522 (1997).

    CAS  PubMed  Google Scholar 

  24. Xiang, J., Chao, D.T. & Korsmeyer, S.J. BAX-induced cell death may not require interleukin 1 ß-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    CAS  PubMed  Google Scholar 

  25. de Maria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652– 1655 (1997).

    CAS  PubMed  Google Scholar 

  26. Miller, T.M. et al. Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell. Biol. 139, 205–217 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarthy, N.J., Whyte, M.K., Gilbert, C.S. & Evan, G.I. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell. Biol. 136, 215–227 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pastorino, J.G., Chen, S.-T., Tafani, M., Snyder, J.W. & Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770–7775 (1998).

    CAS  PubMed  Google Scholar 

  29. Wolter, K.G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281– 1292 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, Y.T., Wolter, K.G. & Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl Acad. Sci. USA 94, 3668–3672 (1997).

    CAS  PubMed  Google Scholar 

  31. Mandal, M., Adam, L., Mendelsohn, J. & Kumar, R. Nuclear targeting of bax during apoptosis in human colorectal cancer cells. Oncogene 17, 999–1007 (1998).

    CAS  PubMed  Google Scholar 

  32. Woo, M. et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806–819 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavoie, J.N., Nguyen, M., Marcellus, R.C., Branton, P.E. & Shore, G.C. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell Biol. 140, 637– 645 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Monney, L. et al. Defects in the ubiquitin pathway induce caspase-independent apoptosis blocked by Bcl-2. J. Biol. Chem. 273, 6121–6131 (1998).

    CAS  PubMed  Google Scholar 

  35. Stuurman, N., Floore, A., Middelkoop, E., van Driel, R. & de Jong, L. PML shuttles between nuclear bodies and the cytoplasm. Cell. Mol. Biol. Letters 2, 137–150 (1997).

    CAS  Google Scholar 

  36. Koken, M.H.M. et al. Leukemia-associated retinoic acid receptor a fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc. Natl Acad. Sci. USA 94, 10255– 10260 (1997).

    CAS  Google Scholar 

  37. Okura, T. et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol. 57, 4277–4281 (1996).

    Google Scholar 

  38. Wang, Z.G. et al. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell-lines and function in a PML and PML/RARα independent manner. Blood 92, 1497– 1504. (1998).

    CAS  PubMed  Google Scholar 

  39. Chan, J.Y.H. et al. Cell-cycle regulation of DNA damage-induced expression of the suppressor gene PML. Biochem. Biophys. Res. Comm. 240, 640–646 (1997).

    CAS  PubMed  Google Scholar 

  40. Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).

    CAS  PubMed  Google Scholar 

  41. Han, J. et al. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev. 10, 461–477 (1995).

    Google Scholar 

  42. Chelbi-Alix, M. & de Thé, H. Herpesvirus induced proteasome-dependent degradation of the nuclear body associated PML et Sp100 proteins. Oncogene, in press.

  43. Everett, R. et al. The disruption of ND10 during herpes simplex virus infection correlates with the VmW110 and proteasome dependent loss of several PML isoforms. J. Virol. 72, 6581–6591 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Grignani, F. et al. The acute promyelocytic leukemia specific PML/RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74, 423–431 (1993).

    CAS  PubMed  Google Scholar 

  45. Testa, U. et al. The PML/RARα fusion protein inhibits tumor necrosis factor induced apoptosis in U937 cells and acute promyelocytic leukemia blasts. J. Clin. Invest. 101, 2278– 2289 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, G.-Q. et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukaemia (APL): I. As2O 3 exerts dose-dependent dual effects on APL cells. Blood 89, 3345–3353 (1997).

    CAS  PubMed  Google Scholar 

  47. Gianni, M. et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic resistant NB4 cells. Blood 91, 4300–4310 (1998).

    CAS  PubMed  Google Scholar 

  48. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazarbachi, A. et al. Arsenic trioxide and interferon α synergize to induce cell cycle arrest and apoptosis in HTLVI-transformed cells. Blood, in press.

  50. Ameisen, J.C. The origin of programmed cell death. Science 272, 1278–1279 (1996).

    CAS  PubMed  Google Scholar 

  51. Green, D. & Reed, J. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    CAS  PubMed  Google Scholar 

  52. de Thé, H. et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    PubMed  Google Scholar 

  53. Estaquier, J. & Ameisen, J.C. A role for T-helper type-1 and type-2 cytokines in the regulation of human monocyte apoptosis. Blood 90, 1618–1625 (1997).

    CAS  PubMed  Google Scholar 

  54. Madani, A. et al. The 8 kD product of the putative oncogene MTCP-1 is a mitochondrial protein. Oncogene 10, 2259– 2262 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the PML group for helpful suggestions, continuous support and critical reading of the manuscript. We also thank F. Puvion and E. Puvion for electronic microscopy work. The LPH is gratefully acknowledged for its artwork. We thank P.P. Pandolfi for exchanging manuscripts before publication. This project was supported by the CNRS, Ligue contre le Cancer (nationale and comité de Paris), ARC and EEC to H.d.T.; ANRS, FRM and INSERM to J.C.A.; the University of Paris VII and the Assistance Publique to both. F.Q. was supported by ARC and FRM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Claude Ameisen or Hugues de Thé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quignon, F., De Bels, F., Koken, M. et al. PML induces a novel caspase-independent death process. Nat Genet 20, 259–265 (1998). https://doi.org/10.1038/3068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing