Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular automata as models of complexity

Abstract

Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed ‘cellular automata’. Cellular automata consist of many identical components, each simple., but together capable of complex behaviour. They are analysed both as discrete dynamical systems, and as information-processing systems. Here some of their universal features are discussed, and some general principles are suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolfram, S. Rev. Mod. Phys. 55, 601–644 (1983).

    Article  ADS  Google Scholar 

  2. Wolfram, S. Physica 10 D, 1–35 (1984).

    MathSciNet  Google Scholar 

  3. Wolfram, S. Commun. Math. Phys. (in the press).

  4. Wolfram, S. Cellular Automata (Los Alamos Science, Autumn, 1983).

    MATH  Google Scholar 

  5. Mandelbrot, B. The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  6. Packard, N., Preprint Cellular Automaton Models for Dendritic Growth (Institute for Advanced Study, 1984).

    Google Scholar 

  7. Madore, B. & Freedman, W. Science 222, 615–616 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Greenberg, J. M., Hassard, B. D. & Hastings, S. P. Bull. Amer. Math. Soc. 84, 1296–1327 (1978).

    Article  MathSciNet  Google Scholar 

  9. Vichniac, G. Physica 10 D, 96–116 (1984).

    MathSciNet  Google Scholar 

  10. Domany, E. & Kinzel, W. Phys. Rev. Lett. 53, 311–314 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  11. Waddington, C. H. & Cowe, R. J. J. theor. Biol. 25, 219–225 (1969).

    Article  CAS  Google Scholar 

  12. Lindsay, D. T. Veliger 24, 297–299 (1977).

    Google Scholar 

  13. Young, D. A. A Local Activator–Inhibitor Model of Vertebrate Skin Patterns (Lawrence Livermore National Laboratory Rep., 1983).

    Google Scholar 

  14. Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, 1983).

    Book  Google Scholar 

  15. Hopcroft, J. E. & Ullman, J. D. Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, New York, 1979).

    MATH  Google Scholar 

  16. Packard, N. Preprint, Complexity of Growing Patterns in Cellular Automata (Institute for Advanced Study, 1983).

    Google Scholar 

  17. Martin, O, Odlyzko, A. & Wolfram, S. Commun. Math. Phys. 93, 219–258 (1984).

    Article  ADS  Google Scholar 

  18. Grassberger, P. Physica 10 D, 52–58 (1984).

    MathSciNet  Google Scholar 

  19. Lind, D. Physica 10 D, 36–44 (1984).

    MathSciNet  Google Scholar 

  20. Margolus, N. Physica 10 D, 81–95 (1984).

    MathSciNet  Google Scholar 

  21. Smith, A. R. Journal of the Association for Computing Machinery 18, 339–353 (1971).

    Article  MathSciNet  Google Scholar 

  22. Berlekamp, E. R., Conway, J. H. & Guy, R. K. Winning Ways for your Mathematical Plays Vol. 2, Ch. 25 (Academic, New York, 1982).

    MATH  Google Scholar 

  23. Gardner, M. Wheels, Life and other Mathematical Amusements (Freeman, San Francisco, 1983).

    MATH  Google Scholar 

  24. Wolfram, S. SMP Reference Manual (Computer Mathematics Group, Inference Corporation, Los Angeles, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfram, S. Cellular automata as models of complexity. Nature 311, 419–424 (1984). https://doi.org/10.1038/311419a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/311419a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing