Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Loss of spatial phase relationships in extrafoveal vision

Abstract

Objects in peripheral vision are not simply blurred but lack quality of form1. Assuming that the visual system performs a (patchwise) Fourier analysis of the retinal image (for review see ref. 2), it has been suggested that this disadvantage of peripheral vision may be due to the inability to encode properly spatial phase relationships3–5. This is of great interest for neurological research as certain visual pathologies imply alterations of perceived form6,7. Previous attempts at measuring phase sensitivities failed to distinguish between the detection of phase-related changes in contrast and phase coding in the visual system8. We separated these processing strategies by applying the iso-second-order texture paradigm of Julesz5 to the discrimination of compound gratings. Our results, reported here, show that the energy detection properties of both foveal and peripheral vision are comparable, however, independently of scale, peripheral vision ignores the relative position of image components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Aubert & Foerster Albrecht v. Graefes Arch. Ophthal. 3 (II), 1–37 (1857).

    Article  Google Scholar 

  2. Braddick, O., Campbell, F. W. & Atkinson, J. in Handbook of Sensory Physiology Vol. 8 (eds Held, R., Leibowitz, H. W. & feuber, H. L.) 3–38 (Springer, Berlin, 1978).

    Google Scholar 

  3. Braddick, O. Documenta ophth. Proc. Ser. 30, 255–262 (1981).

    Google Scholar 

  4. Hilz, R., Rentschler, I. & Brettel, H. Expl Brain Res. 43, 111–114 (1981).

    Article  CAS  Google Scholar 

  5. Julesz, B. Nature 290, 91–97 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Hess, R. Hum. Neurobiol. 1, 17–30 (1982).

    CAS  PubMed  Google Scholar 

  7. Milner, B. & Teuber, H. L. in Analysis of Behavioral Change (ed. Weiskrantz, L.) 268–375 (Harper & Row, New York, 1968).

    Google Scholar 

  8. Badcock, D. R. Vision Res. 24, 613–623 (1984).

    Article  CAS  Google Scholar 

  9. Oppenheim, A. V. & Lim, J. S. Proc. IEEE 69, 529–541 (1981).

    Article  ADS  Google Scholar 

  10. Burr, D., Vision Res. 20, 391–396 (1980).

    Article  CAS  Google Scholar 

  11. Julesz, B. Scient. Am. 232(4), 34–43 (1975).

    Article  CAS  Google Scholar 

  12. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics, 40–43 (Krieger, Huntington, 1974).

    Google Scholar 

  13. Rovamo, J. & Virsu, V. Expl Brain Res. 37, 495–510 (1979).

    Article  CAS  Google Scholar 

  14. Atkinson, J. & Campbell, F. W. Vision Res. 14, 159–162 (1974).

    Article  CAS  Google Scholar 

  15. Hauske, G., Lupp, U. & Wolf, W. Biol. Cybernet. 22, 181–188 (1976).

    Article  CAS  Google Scholar 

  16. Pollen, D. A. & Ronner, S. F. Science 212, 1409–1411 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics, 211–218 (Krieger, Huntington, 1974).

    Google Scholar 

  18. Rentschler, I., Hilz, R. & Grimm, W. Nature 253, 444–445 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Bergen, J. R. & Julesz, B. Nature 303, 696–698 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Dorfman, D. D. & Alf, E. Jr, J. math. Psychol. 6, 487–496 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentschler, I., Treutwein, B. Loss of spatial phase relationships in extrafoveal vision. Nature 313, 308–310 (1985). https://doi.org/10.1038/313308a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313308a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing