Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel brain ATPase with properties expected for the fast axonal transport motor

Abstract

Identification of the ATPase involved in fast axonal transport of membranous organelles has proven difficult. Myosin and dynein, other ATPases known to be involved in cell motility, have properties that are inconsistent with the established properties of fast axonal transport1,2, an essential component of which is readily solubilized in physiological buffer conditions rather than being stably associated with either membranous organelles3 or cytoskeletal elements4. Adenylyl imidodiphosphate (AMP–PNP), a nonhydrolysable analogue of ATP, is a potent inhibitor of fast axonal transport that results in a stable interaction of membranous organelles with microtubules1,2. Here we report the identification and partial characterization of an ATPase activity from brain whose binding to microtubules is stabilized by AMP-PNP. This ATPase activity seems to be associated with a polypeptide of relative molecular mass (Mr)130,000 that is highly enriched in microtubule pellets after incubation with AMP-PNP and a soluble fraction from chick brain. This novel ATPase fraction has the predicted characteristics of the motor involved in fast axonal transport. Common features between the ATPase and fast axonal transport include interaction with the cytoskeleton in the presence of AMP-PNP, ready extractability, no Ca2+ dependence and inhibition by EDTA1,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brady, S. T., Lasek, R. J. & Allen, R. D. Cell Motil. 5, 81–101 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Lasek, R. J. & Brady, S. T. Nature 316, 645–647 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Schroer, T., Brady, S. T. & Kelly, R. J. Cell Biol. 101, 568–572 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. Cell 40, 559–569 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Brady, S. T., Lasek, R. J. & Allen, R. D. Science 218, 1129–1131 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Murphy, D. B. Meth. Cell Biol. 24, 31–50 (1982).

    Article  CAS  Google Scholar 

  7. Eisenberg, E. & Greene, L. E. A. Rev. Physiol. 42, 293–309 (1980).

    Article  CAS  Google Scholar 

  8. Satir, P., Wais-Steider, J., Lebduska, S., Nasr, A. & Avolio, J. Cell Motil. 1, 303–327 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Penningroth, S., Cheung, A., Olehnik, K. & Koslosky, R. J. Cell Biol. 92, 733–741 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H., Binder, L. I. & Rosenbaum, J. L. J. Cell Biol. 80, 266–276 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Brady, S. T., Lasek, R. J., Allen, R. D., Yin, H. & Stossel, T. Nature 310, 56–58 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Isenberg, G., Schubert, P. & Kreutzberg, G. Brain Res. 194, 588–593 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg, D. Proc. natn. Acad. Sci. U.S.A. 79, 4818–4822 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Schnapp, B. J., Vale, R. D., Sheetz, M. & Reese, T. S. Cell 40, 449–454 (1985).

    Article  PubMed  Google Scholar 

  16. Marsh, B. B. Biochem. biophys. Acta 32, 357–361 (1959).

    Article  CAS  PubMed  Google Scholar 

  17. Boheln, P., Stein, S., Dairman, W. & Udenfriend, S. Archs Biochem. Biophys. 155, 213–220 (1973).

    Article  Google Scholar 

  18. Laemmli, U. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. O'Farrell, P. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

  21. Schnapp, B. & Reese, T. S. J. Cell Biol. 94, 667–679 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, S. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985). https://doi.org/10.1038/317073a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317073a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing