Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upstream sequences modulate the internal promoter of the human 7SL RNA gene

Abstract

The human genome is rich in sequences which are structurally related to the 7SL RNA component of the signal recognition particle1. The 7SL DNA sequence family consists of four 7SL genes2, 500 7SL pseudogenes2 (which are truncated at one or both ends of the 7SL sequence) and 500,000 Alu sequences3–5. Both 7SL genes2 and Alu elements6–8 are transcribed by RNA polymerase III, and we show here that the internal 7SL promoter lies within the Alu-like part of the 7SL gene. Why then does RNA polymerase III transcribe the few 7SL genes so efficiently, while transcripts from the far more abundant Alu elements are not readily detectable9–11? We find that a human 7SL gene and a synthetic Alu sequence derived from it are expressed 50–100-fold more efficiently in vitro than either a representative Alu element or two 7SL pseudogenes. 5′ Deletion and insertion mutants of the 7SL gene demonstrate that, in conjunction with the internal promoter, the first 37 nucleotides upstream from the transcription start site are essential for efficient and accurate initiation in vitro. We suggest that the genomic sequences upstream from most Alu elements and 7SL pseudogenes do not contain this element, and consequently that only a small subset of such sequences can be transcribed in vivo. This may help to explain the homogeneity of the Alu family within each mammalian genome, as well as the species-specific differences between mammalian Alu families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walter, P. & Bobel, G. Nature 299, 691–698 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Ullu, E. & Weiner, A. M. EMBO J. 3, 3303–3310 (1984).

    Article  CAS  Google Scholar 

  3. Houck, C. M., Rinehart, F. P. & Schmid, C. W. J. molec. Biol. 132, 289–306 (1979).

    Article  CAS  Google Scholar 

  4. Ullu, E. & Tschudi, C. Nature 312, 171–172 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Gundelfinger, E. D., Di Carlo, M., Zopf, D. & Melli, M. L. EMBO J. 3, 2325–2332 (1984).

    Article  CAS  Google Scholar 

  6. Duncan, C. H., Jagadeeswaran, P., Wang, R. R. C. & Weissman, S. H. Gene 13, 185–196 (1981).

    Article  CAS  Google Scholar 

  7. Paolella, G., Lucero, M. A., Murphy, M. H. & Baralle, F. EMBO J. 2, 691–696 (1983).

    Article  CAS  Google Scholar 

  8. Perez-Stable, C., Ayres, T. M. & Shen, C. J. Proc. natn. Acad. Sci. U.S.A. 81, 5291–5295 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Haynes, S. R. & Jelinek, W. R. Proc. natn. Acad. Sci U.S.A. 78, 6130–6134 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Young, P. R., Scott, R. W., Homer, D. H. & Tilghman, S. M. Nucleic Acids Res. 10, 3099–3116 (1982).

    Article  CAS  Google Scholar 

  11. Allan, M. & Paul, J. Nucleic Acids Res. 12, 1193–1200 (1984).

    Article  CAS  Google Scholar 

  12. Ullu, E., Murphy, S. & Melli, M. Cell 29, 195–202 (1982).

    Article  CAS  Google Scholar 

  13. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).

    Article  CAS  Google Scholar 

  14. Jagadeeswaran, P., Forget, B. G. & Weissman, S. M. Cell 26, 141–142 (1981).

    Article  CAS  Google Scholar 

  15. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. Cell 19, 13–25 (1980).

    Article  CAS  Google Scholar 

  16. Hofstetter, H., Kressmann, A. & Birnstiel, M. L. Cell 24, 573–585 (1981).

    Article  CAS  Google Scholar 

  17. Fowlkes, D. M. & Shenk, T. Cell 22, 405–413 (1980).

    Article  CAS  Google Scholar 

  18. Larson, D., Bradford-Wilcox, J., Young, L. S. & Sprague, K. U. Proc. natn. Acad. Sci. U.S.A. 80, 3416–3420 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Raymond, G. J. & Johnson, J. D. Nucleic Acids Res. 11, 5969–5988 (1983).

    Article  CAS  Google Scholar 

  20. Morton, D. G. & Sprague, K. U. Proc. natn. Acad. Sci. U.S.A. 81, 5519–5522 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Shaw, K. J. & Olson, M. V. Molec. cell. Biol. 4, 657–665 (1984).

    Article  CAS  Google Scholar 

  22. Schaack, J. et al. J. biol. Chem. 259, 1461–1467 (1984).

    CAS  PubMed  Google Scholar 

  23. De Franco, D., Schmidt, O. & Söll, D. Proc. natn. Acad. Sci. U.S.A. 77, 3365–3368 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Dingermann, T., Burke, D. J., Sharp, S., Shaack, J. & Söll, D. J. biol. Chem. 257, 14738–14744 (1982).

    CAS  PubMed  Google Scholar 

  25. Hipskind, R. A. & Clarkson, S. G. Cell 34, 881–890 (1983).

    Article  CAS  Google Scholar 

  26. Krayev, A. S. et al. Nucleic Acids Res. 8, 1201–1215 (1980).

    Article  CAS  Google Scholar 

  27. Haynes, S. R., Toomey, T. P., Leinwand, L. & Jelinek, W. R. Molec. cell. Biol. 1, 573–583 (1981).

    Article  CAS  Google Scholar 

  28. Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T. & Schmid, C. W. J. molec. Biol. 151, 17–33 (1981).

    Article  CAS  Google Scholar 

  29. Daniels, G. R., Fox, G. M., Loewensteiner, D., Schmid, C. W. & Deininger, P. L. Nucleic Acids Res. 11, 7569–7593 (1983).

    Article  Google Scholar 

  30. Weiner, A. M., Deininger, P. L. & Efstradiatis, A. A. Rev. Biochem. 55 (in the press).

  31. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  32. Bogenhagen, D. F. & Brown, D. D. Cell 24, 261–270 (1981).

    Article  CAS  Google Scholar 

  33. Ullu, E. & Melli, M. L. Nucleic Acids Res. 10, 2209–2223 (1982).

    Article  CAS  Google Scholar 

  34. Grimaldi, G., Queen, C. & Singer, M. Nucleic Acids Res. 21, 5553–5567 (1981).

    Article  Google Scholar 

  35. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  36. Ciliberto, G., Raugei, G., Costanzo, F., Dente, L. & Cortese, R. Cell 32, 725–733 (1983).

    Article  CAS  Google Scholar 

  37. Heffron, F., So, M. & McCarthy, B. J. Proc. natn. Acad. Sci. U.S.A. 75, 6012–6016 (1978).

    Article  ADS  CAS  Google Scholar 

  38. Hernandez, N. & Keller, W. Cell 35, 89–99 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullu, E., Weiner, A. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318, 371–374 (1985). https://doi.org/10.1038/318371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318371a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing