Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells

Abstract

The c-myc gene product is a nuclear protein1,2 expressed in a wide variety of cell types3. It has been implicated in the control of normal cell growth as well as transformation4–7, but its exact function is unknown. When the human promyelocytic leukaemia cell line HL60 is treated with retinoic acid, the cells differentiate into granulocytes, and there is a reduction in steady state c-myc RNA of more than 10-fold8. Nuclear runoff assays show that this reduction is caused by a corresponding decrease in the transcription of exon 2. However, only a minor decrease in exon 1 transcription is observed upon differentiation. In undifferentiated HL60 cells there is an approximately 3-fold molar excess of exon 1 transcription over exon 2, and this excess increases to about 15-fold in differentiated cells. This observation suggests that a major component of c-myc transcriptional down-regulation in HL60 cells is at the level of elongation rather than at the level of initiation. The position of the elongation block was mapped to the region of the boundary between exon 1 and intron 1. During HL60 differentiation, a DNase I hypersensitive site in the chromatin about 300 bases downstream of the 5′ end of of intron 1 increases in intensity relative to other sites, possibly reflecting events associated with the termination of transcription. Our runoff analysis also revealed transcription of both strands immediately upstream of exon 1 in HL60 cells. The sense strand transcription of this region produces a novel c-myc RNA which initiates several hundred bases upstream of the previously defined promoters and is found in a variety of cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alitalo, K. et al. Nature 306, 274–277 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hann, S., Abrams, H., Rohrschneider, L. & Eisenman, R. Cell 34, 789–798 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Gonda, T., Sheiness, D. & Bishop, Molec. Cell. Biol. 2, 617–624 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayward, W., Neel, B. & Astrin, S. Nature 290, 475–480 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kelly, K., Cochran, B., Stiles, C. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Land, H., Parada, L. & Weinberg, R. Nature 304, 596–602 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Palmieri, S., Kahn, P. & Graf, T. EMBO J. 2, 2385–2389 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westin, E., et al. Proc. natn. Acad. Sci. U.S.A. 79, 2490–2494 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Dony, C., Kessel, M. & Gruss, P. Nature 317, 636–639 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Greenberg, M. & Ziff, E. Nature 311, 433–438 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Blanchard, J-M. et al. Nature 317, 443–445 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hayday, A. et al. Nature 307, 334–340 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hawley, D. & Roeder, R. J. biol. Chem. 260, 8163–8172 (1985).

    CAS  PubMed  Google Scholar 

  14. Lindell, T., Weinberg, F., Morris, P., Roeder, R. & Rutter, W. Science 170, 447–448 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Groudine, M., Peretz, M. & Weintraub, H. Molec. Cell. Biol. 1, 281–288 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schibier, U., Hagenbuchle, O., Wellauer, P. & Pittet, A. Cell 33, 501–508 (1983).

    Article  Google Scholar 

  17. Linial, M., Gunderson, N. & Groudine, M. Science 230, 1126–1132 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Baralle, F., Shoulders, C. & Proudfoot, N. Cell 21, 621–626 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Bentley, D. and Groudine, M. Molec. cell. Biol. (in the press).

  20. ar-Rushdi, A. et al. Science 222, 390–393 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Grosso, L. & Pitot, H. Cancer Res. 45, 847–850 (1985).

    CAS  PubMed  Google Scholar 

  22. Gazin, C. et al.. EMBO J. 3, 383–387 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crouse, G., Leys, E., McEwan, R., Frayne, E. & Kellems, R. Molec. cell. Biol. 5, 1847–1858 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melton, D. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bentley, D. L. Nature 307, 77–80 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cleveland, D. et al. Cell 20, 95–105 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Stalder, J., Groudine, M., Dodgson, J., Engel, D. & Weintraub, H. Cell 19, 973–980 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Siebenlist, U., Hennighausen, L., Battey, J. & Leder, P. Cell 37, 381–391 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Dyson, P., Littlewood, T., Forster, Z. & Rabbits, T. EMBO J. 4, 2885–2892 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bogenhagen, D. & Brown, D. Cell 24, 261–270 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Hatfield, G., Sharp, J. & Rosenberg, M. Molec. cell. Biol. 3, 1687–1693 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sato, K., Back, K-H. & Agarwal, K. Molec. cell. Biol. 6, 1032–1043 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maderious, A. & Chen-Kiang, S. Proc. natl. Acad. Sci. U.S.A. 81, 5931–5935 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gingeras, T. et al. J. biol. Chem. 257, 13475–13491 (1982).

    CAS  PubMed  Google Scholar 

  35. Bernard, O., Cory, S., Gerondaikis, S., Webb, E. & Adams, J. EMBO J. 2, 2375–2383 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentley, D., Groudine, M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature 321, 702–706 (1986). https://doi.org/10.1038/321702a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321702a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing