Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical transition of myoglobin revealed by inelastic neutron scattering

Abstract

Structural fluctuations in proteins on the picosecond timescale have been studied in considerable detail by theoretical methods such as molecular dynamics simulation1,2, but there exist very few experimental data with which to test the conclusions. We have used the technique of inelastic neutron scattering to investigate atomic motion in hydrated myoglobin over the temperature range 4–350 K and on the molecular dynamics timescale 0.1–100 ps. At temperatures below 180 K myglobin behaves as a harmonic solid, with essentially only vibrational motion. Above 180 K there is a striking dynamic transition arising from the excitation of non-vibrational motion, which we interpret as corresponding to tor-sional jumps between states of different energy, with a mean energy asymmetry of KJ mol −1. This extra mobility is reflected in a strong temperature dependence of the mean-square atomic displacements, a phenomenon previously observed specifically for the heme iron by Mossbauer spectroscopy3–5, but on a much slower timescale (10−7 s). It also correlates with a glass-like transition in the hydration shell of myoglobin6 and with the temperature-dependence of ligand-binding rates at the heme iron, as monitored by flash photolysis7. In contrast, the crystal structure of myoglobin determined down to 80 K shows no significant structural transition8–10. The dynamical behaviour we find for myoglobin (and other globular proteins) suggests a coupling of fast local motions to slower collective motions, which is a characteristic feature of other dense glass-forming systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McCammon, J. A. Rep. Prog. Phys. 47, 1–46 (1984).

    Article  ADS  Google Scholar 

  2. Levy, R. M. et al. Biophys. J. 48, 509–518 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Parak, F. et al. FEBS Lett. 117, 368–372 (1980).

    Article  CAS  Google Scholar 

  4. Keller, H. & Debrunner, P. Phys. Rev. Lett. 45, 68–71 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Bauminger, E. R., Cohen, S. G., Nowik, I., Ofer, S. & Yariv, J. Proc. natn. Acad. Sci. U.S.A. 80, 736–740 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Doster, W., Bachleitner, A., Dunau, R., Hieble, M. & Lüscher, E. Biophys. J. 50, 213–219 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsales, I. C. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  8. Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. Nature 280, 558–563 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Hartmann, H. et al. Proc. natn. Acad. Sci. U.S.A. 79, 4967–4971 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Parak, F. et al. Eur. Biophys. J. 15, 237–249 (1987).

    Article  CAS  Google Scholar 

  11. Cusack, S. in The Enzyme Catalysis Process: Energetics, Mechanism and Dynamics (eds Cooper, A. & Houben, J. (NATO ASI series, Plenum, London, in the press).

  12. Springer, T. in Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids (Springer Tracts in Modern Physics, Vol. 64, 1972).

    Book  Google Scholar 

  13. Bee, M. in Quasielastic Neutron Scattering: Principles and Applications in Solid-state Chemistry, Biology and Materials Science (Hilger, Bristol, 1988).

    Google Scholar 

  14. Stöckli, H., Furrer, A., Schoenenberger, Ch., Meier, B. H., Ernst, R. R. & Anderson, I. Physica 136B, 161–164 (1986).

    Google Scholar 

  15. Levitt, M. J. molec. Biol. 168, 621–657 (1983).

    Article  CAS  Google Scholar 

  16. Cusack, S., Smith J., Finney, J., Tidor, B. & Karplus, M. J. molec. Biol. 202, 903–908 (1988).

    Article  CAS  Google Scholar 

  17. Frick, B., Richter, D., Petry, W. & Buchenau, U. Z. Phys. B70, 1–3 (1988).

    Google Scholar 

  18. Davidson, D. W. & Cole, R. H. J. chem. Phys. 18, 1417–1419 (1950).

    Article  ADS  CAS  Google Scholar 

  19. Bengtzelius, W., Gotze, W. & Sjölander, A. J. Phys. C17, 5915–5933 (1984).

    ADS  Google Scholar 

  20. Götze, W. & Sjögren, L. J. Phys. C20, 879–894 (1987).

    ADS  Google Scholar 

  21. Götze, W. & Sjögren, L. J. Phys. C21, 3407–3471 (1988).

    ADS  Google Scholar 

  22. Doster, W., Cusack, S. & Petry, W. Proc. ILL Workshop Dynamics of Disordered Materials, Grenoble, 1988.

    Google Scholar 

  23. Poglitsch, H., Kremer, F. & Genzel, L. J. molec. Biol. 173, 137–142 (1984).

    Article  CAS  Google Scholar 

  24. Parak, F., Heidemeier, J. & Nienhaus, G. U. Hyperfine Interactions 40, 147–158 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Elber, R. & Karplus, M. Science 235, 318–321 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Neutron Research Facilities at the ILL High-Flux Reactor (Institut Laue-Langevin, Grenoble, 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doster, W., Cusack, S. & Petry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989). https://doi.org/10.1038/337754a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337754a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing