Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dominant control region from the human β-globin locus conferring integration site-independent gene expression

Abstract

THE regulatory elements that determine the expression pattern of a number of eukaryotic genes expressed specifically in certain tissues have been defined and studied in detail. In general, however, the expression conferred by these elements on genes reintroduced into the genomes of cell lines and transgenic animals has turned out to be at a low level relative to that of endogenous genes, and influenced by the chromosomal site of insertion of the exogenous construct. We have previously shown that if regions flanking the human β-globin locus are introduced into the mouse genome along with the human β-globin gene, a level of expression comparable to that of endogenous genes can be achieved that is also independent of integration site1,2. We have now defined a dominant control region with these properties consisting of 6.5 kilobases of DNA encompassing erythroid cell-specific DNase I hypersensitive sites. The identification of such dominant control regions could have important applications in somatic gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grosveld, F., Blom van Assendelft, G., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  2. Blom van Assendelft, G., Hanscombe, O., Grosveld, F. & Greaves, D. R. Cell 56, 969–977 (1989).

    Article  CAS  Google Scholar 

  3. Tuan, D., Solomon, W., Li, Q. & London I. M. Proc. natn. Acad. Sci. U.S.A. 82, 6384–6388 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Forrester, W. C., Takegawa, S., Papayannopoulou, T., Stamatoyannopoulos, G. & Groudine, M. Nucleic Acids Res. 15, 10159–10177 (1987).

    Article  CAS  Google Scholar 

  5. Marks, P. A. & Rifkind, R. A. A. Rev. Biochem. 47, 419–426 (1978).

    Article  CAS  Google Scholar 

  6. Kollias, G., Hurst, J., deBoer, E. & Grosveld, F. Nucleic. Acids Res., 15, 5739–5747 (1987).

    Article  CAS  Google Scholar 

  7. Behringer, R. R., Hammer, R. E., Brinster, R. L., Palmiter, R. D. & Townes, T. M. Proc. natn. Acad. Sci. U.S.A. 84, 7056–7060 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Trudel, M., Magram, J., Bruckner, C. & Costantini, F. Molec. cell. Biol. 7, 4024–4029 (1987).

    Article  CAS  Google Scholar 

  9. Antoniou, M., deBoer, E., Habets, G. & Grosveld, F. EMBO J. 7, 377–384 (1988).

    Article  CAS  Google Scholar 

  10. Banerji, J., Rusconi, S. & Schaffner, W. Cell 27, 299–300 (1981).

    Article  CAS  Google Scholar 

  11. Dzierzak, E., Papayannopoulou, T. & Mulligan, R. Nature 331, 35–41 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Cone, R., Benarous, W., Baorto, D. & Mulligan, R. Molec. cell. Biol. 7, 887–897 (1987).

    Article  CAS  Google Scholar 

  13. Bender, M., Miller, D. & Gelinas, R. Molec. cell. Biol. 8, 1725–1738 (1988).

    Article  CAS  Google Scholar 

  14. Luzzatto, L. & Goodfellow, P. Nature. 337, 17–18 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Grosveld, F. et al. Nucleic. Acids Res. 10, 6715–6732 (1982).

    Article  CAS  Google Scholar 

  16. Auffrey, C. & Rougeon, R. Eur. J. Biochem. 107, 303–314 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, D., Collis, P., Antoniou, M. et al. A dominant control region from the human β-globin locus conferring integration site-independent gene expression. Nature 338, 352–355 (1989). https://doi.org/10.1038/338352a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338352a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing