Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers

Abstract

The external region of a cell membrane, known as the glycocalyx, is dominated by glycosylated molecules1,2,3 which direct specific interactions such as cell–cell recognition and contribute to the steric repulsion that prevents undesirable non-specific adhesion of other molecules and cells. Mimicking the non-adhesive properties of a glycocalyx provides a potential solution to the clinical problems, such as thrombosis4, that are associated with implantable devices owing to non-specific adsorption of plasma proteins. Here we describe a biomimetic surface modification of graphite using oligosaccharide surfactant polymers, which, like a glycocalyx, provides a dense and confluent layer of oligosaccharides. The surfactant polymers consist of a flexible poly(vinyl amine) with dextran and alkanoyl side chains. We show that alkanoyl side chains assemble on graphite through hydrophobic interaction and epitaxial adsorption. This constrains the polymer backbone to lie parallel to the substrate, with solvated dextran side chains protruding into the aqueous phase, creating a glycocalyx-like coating. The resulting biomimetic surface is effective in suppressing protein adsorption from human plasma protein solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular models of oligosaccharide surfactant polymer.
Figure 2: AFM images, observed in situ, of adsorbed surfactant polymer.
Figure 3: Model of the epitaxial adsorption of surfactant polymer on graphite.
Figure 4: Infrared spectra (1800–1400 cm−1 region) showing amount of protein adsorption.

Similar content being viewed by others

References

  1. Evans, W. H. & Graham, J. M. Membrane Structure and Function 1–86 (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. Fukuda, M. in Molecular Glycobiology (eds Fukuda, M. & Hindsgaul, O.) 1–52 (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  3. Bongrand, P. in Physical Basis of Cell-Cell Adhesion (ed. Bongrand, P.) 1–37 (CRC, Boca Raton, FL, 1987).

    Google Scholar 

  4. Salzman, E. W., Merrill, E. W. & Hent, K. C. in Hemostasis and Thrombosis3rd edn (eds Colman, R. W., Hirsh, J., Marder, V. J. & Salzman, E. W.) 1469–1485 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  5. Helmus, M. N. & Hubbell, J. A. Materials selection. Cardiovasc. Pathol. (Suppl.) 2, 53S–71S (1993).

    Article  Google Scholar 

  6. Badesso, R. & Pinschmidt, R. K. Jr Synthesis of amine functional homopolymers with N-ethenylformamide. Polym. Mater. Sci. Eng. 69, 251–252 (1993).

    CAS  Google Scholar 

  7. Qiu, Y., Zhang, T., Ruegsegger, M. & Marchant, R. E. Novel nonionic oligosaccharide surfactant polymers derived from poly(vinyl amine) with pendant dextran and hexanoyl groups. Macromolecules 31, 165–171 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Qiu, Y. & Marchant, R. E. Protein resistant biomaterial surfaces derived from physically immobilized novel oligosaccharide surfacant molecules. Trans. Soc. Biomater. 20, 224 (1997).

    Google Scholar 

  9. Putman, C. A. J., Vanderwerf, K. O., De Grooth, B. G., Van Hulst, N. F. & Greve, J. Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64, 2454–2456 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Zhang, T. & Marchant, R. E. Novel polysaccharide surfactants: The effect of hydrophobic and hydrophilic chain length on surface active properties. J. Colloid Interface Sci. 177, 419–426 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Groszek, A. Selective adsorption at graphite/hydrocarbon interfaces. Proc. R. Soc. Lond. A 314, 473–498 (1970).

    Article  ADS  Google Scholar 

  12. McGonigal, G. C., Bernhardt, R. H. & Thompson, D. J. Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Appl. Phys. Lett. 57, 28–30 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Rabe, J. P. & Buchholz, S. Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253, 424–427 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Wellinghoff, S., Rybnikar, F. & Baer, E. Epitaxial crystallization of polyethylene. J. Macromol. Sci. Phys.B 10, 1–39 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Whitman, J. C. & Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909–948 (1990).

    Article  Google Scholar 

  16. Manne, S. & Gaub, H. E. Molecular organization of surfactants at solid-liquid interfaces. Science 270, 1480–1482 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D. & Hansma, P. K. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double-layer. Langmuir 10, 4409–4413 (1994).

    Article  CAS  Google Scholar 

  18. Milner, S. T. Polymer brushes. Science 251, 905–914 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Sharma, R. Small-molecule surfactant adsorption, polymer surfactant adsorption, and surface solubilization — An overview. ACS Symp. Ser. 615, 1–20 (1995).

    CAS  Google Scholar 

  20. Golander, C.-G. et al. in Poly(ethylene glycol) Chemistry (ed. Harris, J. M.) 221–246 (Plenum, New York, 1992).

    Book  Google Scholar 

  21. Österberg, E. et al. Protein-rejecting ability of surface bound dextran in end-on and side-on configurations: Comparison to PEG. J. Biomed. Mater. Res. 29, 741–747 (1995).

    Article  Google Scholar 

  22. Nemanich, R. J., Lucovsky, G. & Solin, S. A. Infrared active optical vibrations of graphite. Solid State Commun. 23, 117–120 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support for this work provided by the National Institutes of Health and the Whitaker Foundation, and use of the AFM and IR facilities at the Center for Cardiovascular Biomaterials, CWRU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger E. Marchant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, N., Qiu, Y., Ruegsegger, M. et al. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392, 799–801 (1998). https://doi.org/10.1038/33894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33894

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing