Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

First-principles prediction of high-temperature superconductivity in metallic hydrogen

Abstract

AT ambient pressure and low temperatures, hydrogen crystallizes in an insulating molecular phase. The possibility of a transition to a metallic structure at high pressures has been the subject of research for over fifty years1-6. Moreover, it has been recognized for some time that metallic hydrogen could be a superconductor2, but estimates of its transition temperature vary widely4,7,8. Here we present the first ab initio calculation of the electron-phonon coupling constant λ in a distorted hexagonal high-pressure (400 GPa) phase of hydrogen; this first-principles approach has successfully predicted superconductivity in compressed silicon9,10. From the calculated value of λ for this structure, and using standard BCS-Eliashberg11-13 theory, the superconducting transition temperature Tc is estimated to be 230±85 K. Thus if metallic hydrogen were to be formed in the laboratory in the structure proposed here or in similar structures, it should be superconducting with the highest Tc yet known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wigner E. & Huntington H. B. J. chem. Phys. 3, 764–770 (1935).

    Article  ADS  CAS  Google Scholar 

  2. Ashcroft N. W. Phys. Rev. Lett. 21, 1748–1749 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Chakravarty S., Rose J. H., Wood D. & Ashcroft N. W. Phys. Rev. B24, 1624–1635 (1981).

    Article  ADS  Google Scholar 

  4. Min B. I., Jansen H. J. F. & Freeman A. J. Phys. Rev. B30, 5076–5083 (1984).

    Article  ADS  Google Scholar 

  5. Min B. I., Jansen H. J. F. & Freeman A. J. Phys. Rev. B33, 6383–6390 (1986).

    Article  ADS  Google Scholar 

  6. Barbee, T. W. III, Garcia A., Cohen M. L. & Martins J. L. Phys. Rev. Lett. 62, 1150–1153 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Gupta R. P. & Sinha S. K. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 583–592 (Plenum, New York, 1976).

    Book  Google Scholar 

  8. Switendick, A. C. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 593–604 (Plenum, New York, 1976).

    Book  Google Scholar 

  9. Chang K. J. et al. Phys. Rev. Lett. 54, 2375–2378 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Dacorogna M. M., Chang, K. J. & Cohen, M. L. Phys. Rev. B32, 1853–1855 (1985).

    Article  ADS  Google Scholar 

  11. Bardeen, J., Cooper, L. N. & Schrieffer J. R. Phys. Rev. 106, 162–164 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Bardeen J., Cooper L. N. & Schrieffer J. R. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Eliashberg G. M. Soviet. Phys. JETP 11, 696–702 (1960).

    Google Scholar 

  14. Mao H. K. & Hemley R. J. Science 244, 1462–1465 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Cohen M. L. & Anderson P. W. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 17–27 (American Institute of Physics, New York, 1972).

    Google Scholar 

  16. Lam P. K., Dacorogna M. M. & Cohen M. L. Phys. Rev. B34, 5065–5069 (1986).

    Article  ADS  CAS  Google Scholar 

  17. McMillan W. L. Phys. Rev. 167, 331–344 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Cohen M. L. Physica Scripta T1, 5–10 (1982).

    Article  ADS  Google Scholar 

  19. Allen P. B. & Dynes R. C. Phys. Rev. B12, 905–922 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Allender D., Bray J. & Bardeen J. Phys. Rev. B7, 1020–1029 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbee, T., García, A. & Cohen, M. First-principles prediction of high-temperature superconductivity in metallic hydrogen. Nature 340, 369–371 (1989). https://doi.org/10.1038/340369a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340369a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing