Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli

Abstract

IN antibodies, a heavy and a light chain variable domain, VH and VL, respectively, pack together and the hypervariable loops on each domain contribute to binding antigen1–4. We find, however, that isolated VH domains with good antigen-binding affinities can also be prepared. Using the polymerase chain reaction5, diverse libraries of VH genes were cloned from the spleen genomic DNA of mice immunized with either lysozyme or keyhole-limpet haemocyanin. From these libraries, VH domains were expressed and secreted from Escherichia coli. Binding activities were detected against both antigens, and two VH domains were characterized with affinities for lysozyme in the 20 nM range. Isolated variable domains may offer an alternative to monoclonal antibodies and serve as the key to building high-affinity human antibodies. We suggest the name 'single domain antibodies (dAbs)' for these antigen binding demands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Amit, A. G., Mariuzza, R. A. Phillips, S. E. V. & Poljak, R. J. Science 233, 747–754 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Satow, Y., Cohen, G. H., Padlan, E. A. & Davies, D. R. J. molec. Biol. 190, 593–603 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Colman, P. M. et al. Nature 326, 358–362 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Sheriff, S. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8075–8079 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Saiki, R. K. et al. Science 230, 1350–1354 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Skerra, A. & Plückthun, A. Science 240, 1038–1040 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Better, M., Chang, C. P., Robinson, R. R. & Horwitz, A. H. Science 240, 1041–1043 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Riechmann, L., Foote, J. & Winter, G. J. molec. Biol. 203, 825–828 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Matsudaira, P. J. biol. Chem. 262, 10035–10038 (1987).

    CAS  PubMed  Google Scholar 

  11. Fearnley, I. M., Runswick, M. J. & Walker, J. E. EMBO J. 8, 665–672 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fleischman, J. B., Porter, R. R. & Press, E. M. Biochem. J. 88, 220–228 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Utsumi, S. & Karush, F. Biochemistry 3, 1329–1338 (1964).

    Article  CAS  PubMed  Google Scholar 

  14. Jaton, J-C., Klinman, N. R., Givol, D. & Sela, M. Biochemistry 7, 4185–4195 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. Edmundson, A. B., Ely, K. R. & Herron, J. N. Molec. Immunology 21, 561–576 (1984).

    Article  CAS  Google Scholar 

  16. Fersht, A. R. et al. Nature 314, 235–238 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Fersht, A. R., Wilkinson, A. J., Carter, P. & Winter, G. Biochemistry 24, 5858–5861 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Chothia, C., Lesk, A. M., Dodson, G. G. & Hodgkin, D. C. Nature 302, 500–505 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Orlandi, R., Güssow, D. H., Jones, P. T. & Winter, G. Proc. natn. Acad. Sci. U.S.A. 86, 3833–3837 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Kabat, E. A., Wu, T. T., Reid-Miller, M. & Gottesman, K. S. in Sequences of Proteins of Immunological Interest (US Department of Health and Human Services. US Government Printing Office, 1987).

    Google Scholar 

  21. Sastry, L. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5728–5732 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Evan, G. I., Lewis, G. K. Ramsay, G. & Bishop, J. M. Molec. Cell Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Munro, S. & Pelham, H. Cell 46, 291–300 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Rossman, M. G. et al. Nature 317, 145–153 (1985).

    Article  ADS  Google Scholar 

  26. Weis, W. et al. Nature 333, 426–431 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Nature 321, 522–525 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Levison, S. A., Kierszenbaum, F. & Dandliker, W. B. Biochemistry 9, 322–331 (1970).

    Article  CAS  PubMed  Google Scholar 

  29. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Lei, S-P., Lin, H-C., Wang, S-S., Callaway, J. & Wilcox, G. J. Bact. 169, 4379–4383 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gronenborn, B. Molec. gen. Genet. 148, 243–250 (1976).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  33. Baldwin, E. & Schultz, P. G. Science 245, 1104–1107 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, E., Güssow, D., Griffiths, A. et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546 (1989). https://doi.org/10.1038/341544a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341544a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing