Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAPI

Abstract

TRANSCRIPTION of eukaryotic genes requires an interaction between transcription factors that bind to the TATA box region, and transcriptional activators that bind to upstream activating sequences (UASs) or enhancers1–6. Several yeast upstream transcriptional activators, such as GCN4, GAL4 and HAPI, seem to contain separate domains for binding to DNA and activating transcription7–9. The expression of the cytochrome genes CYC1 and CYC7 is controlled by HAPI, which binds to dissimilar DNA sequences in UAS1 of CYC1 and the UAS of CYC7. HAPI has a zinc-finger DNA-binding domain between amino-acid residues 1 and 148, and a highly acidic C-terminal activation domain between residues 1,308 and 1,483 (ref. 10). A mutant allele of the HAPI gene, HAP1-18, leads to a change in Ser 63 to Arg 63, immediately adjacent to the zinc finger in the DNA-binding domain10,11. The HAP1-18 mutation specifically abolishes the ability of the protein to bind to UAS1, but greatly increases the ability of the protein to activate transcription of CTC712,13. We now report that this increase in activation is mediated solely by the CYC7 UAS and the HAP1-18 protein, and also that it is not caused by an altered binding affinity of the protein for the CYC7 UAS. Furthermore, even by substituting other amino acids at position 63 and over-expressing the resulting derivatives in vivo we were unable to increase activity at the UAS of CYC7 to the level obtained with HAP1-18. This rules out the possibility that the HAP1-18 mutation increases transcriptional activation by abolishing competition by UAS1 and U AS 1-like sites for the protein. We thus conclude that HAP1-18 is a better activator of transcription than the wild-type protein when bound to the UAS of CYC7. Moreover, our findings indicate that in addition to the acidic activation domain, the zinc-finger DNA-binding domain participates directly in the activation of transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guarente, L. A. Rev. Genet. 21, 425–452 (1987).

    Article  CAS  Google Scholar 

  2. Struhl, K. Cell 49, 295–297 (1987).

    Article  CAS  Google Scholar 

  3. Maniatis, T., Goodbourn, S. & Fischer, S. Science 236, 1237–1242 (1987).

    Article  ADS  CAS  Google Scholar 

  4. McKnight, S. & Tjian, R. Cell 46, 795–800 (1986).

    Article  CAS  Google Scholar 

  5. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  6. Hawley, D. & Roeder, R. J. biol. Chem. 262, 3452–3461 (1987).

    CAS  PubMed  Google Scholar 

  7. Brent, R. & Ptashne, M. Cell 43, 729–736 (1985).

    Article  CAS  Google Scholar 

  8. Hope, I. & Struhl, K. Cell 46, 885–894 (1986).

    Article  CAS  Google Scholar 

  9. Ma, J. & Ptashne, M. Cell 48, 847–853 (1987).

    Article  CAS  Google Scholar 

  10. Pfeifer, K., Kim, K. S., Kogan, S. & Guarente, L. Cell 56, 291–301 (1989).

    Article  CAS  Google Scholar 

  11. Creusot, F., Verdiere, J., Gaisne, M. & Slonimski, P. J. molec. Biol. 204, 263–276 (1988).

    Article  CAS  Google Scholar 

  12. Pfeiffer, K., Prezant, T. & Guarente, L. Cell 49, 19–27 (1987).

    Article  Google Scholar 

  13. Clavilier, L., Aubwer, P., Somlo, M. & Slonimski, P. Biochemie 58, 155–172 (1976).

    Article  CAS  Google Scholar 

  14. Fried, M. & Crothers, D. Nucleic Acids. Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  15. Garner, M. & Revson, A. Nucleic Acids Res. 9, 3047–3060 (1981).

    Article  CAS  Google Scholar 

  16. Pfeifer, K. thesis, MIT, Cambridge, Massachusetts (1988).

  17. Brandl, C. & Struhl, K. Proc. natn. Acad. Sci. U.S.A. 86, 2652–2656 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Guarente, L., Nye, J., Hochschild, A. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 79, 7410–7414 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Hochschild, A., Irwin, N. & Ptashne, M. Cell 32, 319–325 (1983).

    Article  CAS  Google Scholar 

  20. Hollenberg, S. & Evans, R. Cell 55, 899–906 (1988).

    Article  CAS  Google Scholar 

  21. Schena, M., Freedman, L. & Yamamoto, K. Genes Dev. 3, 1590–1601 (1989).

    Article  CAS  Google Scholar 

  22. Pfeifer, K., Arcangioli, B. & Guarente, L. Cell 49, 9–18 (1987).

    Article  CAS  Google Scholar 

  23. Nakamaye, K. & Ekstein, F. Nucleic Acids Res. 14, 9679–9698 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soo Kim, K., Guarente, L. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAPI. Nature 342, 200–203 (1989). https://doi.org/10.1038/342200a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342200a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing