Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet

Abstract

THE convergence of two continents can be accommodated by crustal thickening and by lateral transport of crust out of the path of the converging continents1–3. The principal features suggesting that lateral transport is important are major strike-slip faults striking roughly orthogonally to the orientation of convergence between the continents. Displacement on such faults is imagined to allow lateral transport of material with respect to the converging continents, possibly accounting for a large fraction of the convergence between the two continents. The most spectacular example of such strike-slip faulting is in the eastern part of the Tibetan Plateau, where three major left-lateral faults, with slip rates of >10 mm yr–1, and several smaller roughly parallel faults dominate the regional strain field2,3. Cobbold and Davy4 suggested that these faults may be rotating in a clockwise fashion. Here we put bounds on that rate of rotation, and conclude that the image of lateral transport on such faults2, known also as 'continental escape', 'extrusion', or 'expulsion', is an illusion, and that instead the left-lateral slip on east-striking planes in eastern Tibet is a manifestation of north-striking right-lateral simple shear. If this conclusion is correct, the east-striking left-lateral faults and the crustal blocks between them are rotating clockwise at 1–2° Myr–1, the east-west dimension of eastern Tibet is shortening at 10–20 mm yr–1, and little material is moving eastward out of India's path into Eurasia by left-lateral simple shear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKenzie, D. Geophys. J. R. astr. Soc. 30, 109–185 (1972).

    Article  ADS  Google Scholar 

  2. Molnar, P. & Tapponnier, P. Science 189, 419–426 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Tapponnier, P. & Molnar, P. J. geophys. Res. 82, 2905–2930 (1977).

    Article  ADS  Google Scholar 

  4. Cobbold, P. R. & Davy, P. Bull. Geol. Inst. Uppsala. 14, 143–162 (1988).

    Google Scholar 

  5. Peltzer, G., Tapponnier, P. & Armijo, R. Science 246, 1285–1289 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Kidd, W. S. F. & Molnar, P. Phil. Trans, R. Soc. Lond. A327, 337–363 (1988).

    Article  ADS  Google Scholar 

  7. Allen, C. R. et al. Geol. Soc. Am. Bull. (in the press).

  8. Molnar, P. & Deng Qidong J. geophys. Res. 89, 6203–6227, (1984).

    Article  ADS  Google Scholar 

  9. Peltzer, G. et al. J. geophys. Res. 93, 7793–7812 (1988).

    Article  ADS  Google Scholar 

  10. Burchfiel, B. C. et al. Tectonics (in the press).

  11. Zhang Peizhen, Quat. Res. 30, 151–164, (1988).

    Article  Google Scholar 

  12. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R. & Cobbold, P. Geology 10, 611–616 (1982).

    Article  ADS  Google Scholar 

  13. Armijo, R., Tapponnier, P. & Han Tonglin, J. geophys. Res. 94, 2787–2838, (1989).

    Article  ADS  Google Scholar 

  14. Peltzer, G. & Tapponnier, P. J. geophys. Res. 93, 15,085–15,117, (1988).

    Article  ADS  Google Scholar 

  15. Molnar, P. & Lyon-Caen, H. Geophys. J. Int. 99, 123–153, 1989.

    Article  ADS  Google Scholar 

  16. Beck, M. E. Am. J. Sci. 276, 694–712, (1976).

    Article  ADS  Google Scholar 

  17. Luyendyk, B. P., Kameling, M. J., Terres, R. R. & Hornafius, J. S. J. geophys. Res. 90, 12,454–12,466 (1985).

    Article  ADS  Google Scholar 

  18. Kissel, C. & Laj, C. (eds) Paleomagnetic Rotations and Continental Tectonics (Kluwer, Dordrecht, 1989).

  19. McKenzie, D. & Jackson, J. Earth planet. Sci. Lett. 65, 182–202, (1983).

    Article  ADS  Google Scholar 

  20. Minister, J. B. & Jordan, T. H. J. geophys. Res. 83, 5331–5354 (1978).

    Article  ADS  Google Scholar 

  21. Baranowski, J., Armbruster, J., Seeber, L. & Molnar, P. J. geophys. Res. 89, 6918–6928 (1984).

    Article  ADS  Google Scholar 

  22. Lyon-Caen, H. & Molnar, P. Tectonics 4, 513–538 (1985).

    Article  ADS  Google Scholar 

  23. Molnar, P. Ann. Geophiscae. 5, 663–670 (1987).

    Google Scholar 

  24. Tapponnier, P. & Molnar, P. J. geophys. Res. 84, 3425–3459 (1979).

    Article  ADS  Google Scholar 

  25. Peltzer, G., Tapponier, P., Zhang, Z. & Xu Z-q. Nature 317, 500–505, (1985).

    Article  ADS  Google Scholar 

  26. Tapponnier, P., Peltzer, G. & Armijo, R. Spec. Publs Geol. Soc. Lond. 19, 115–157 (1986).

    Google Scholar 

  27. McCaffrey, R. J. geophys. Res. 93, 15161–15182 (1988).

    Article  ADS  Google Scholar 

  28. Houseman, G. A. & England, P. C. J. geophys. Res. 86, 3651–3663 (1986).

    Article  ADS  Google Scholar 

  29. England, P. C. & Houseman, G. A. J. geophys. Res. 86, 3664–3676 (1986).

    Article  ADS  Google Scholar 

  30. England, P. & Houseman, G. J. geophys. Res. (in the press).

  31. England, P. C. & McKenzie, D. P. Geophys. J. R. astr. Soc. 70, 295–321, (1982).

    Article  ADS  Google Scholar 

  32. Vilotte, J. P., Daignières, M. & Madariaga, R. J. geophys. Res. 87, 10709–10728 (1982).

    Article  ADS  Google Scholar 

  33. Vilotte, J. P., Daignières, M., Madariaga, R. & Zienckiweicz, O. C. Phys. Earth planet. Inter. 36, 236–259, (1984).

    Article  ADS  Google Scholar 

  34. Davy, P. & Cobbold, P. Bull. Geol. Inst. Uppsala. 14, 129–142 (1988).

    Google Scholar 

  35. Freund, R. J. Geol. 78, 188–200 (1970).

    Article  ADS  Google Scholar 

  36. Garfunkel, Z. & Ron, H. J. geophys. Res. 90, 8589–8602 (1985).

    Article  ADS  Google Scholar 

  37. Jackson, J. & McKenzie, D. Geophys. J. 93, 46–73 (1988).

    Article  Google Scholar 

  38. Chang Cheng-fa, & Cheng Hsi-Ian Sci. Sinica 16, 257–265 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

England, P., Molnar, P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature 344, 140–142 (1990). https://doi.org/10.1038/344140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing