Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for redox cycling of iron in atmospheric water droplets

Abstract

ALTHOUGH liquid water is a minor component of the troposphere, the chemical reactions that occur in water droplets (clouds, fog or rain) affect the composition of the atmosphere and the atmos-pheric input to terrestrial and aquatic ecosystems. Iron (Fe(II) and Fe(III)) is involved in many of these processes, particularly redox and radical chain reactions1–6. Here we report measurements of Fe(II) concentration (up to 200 μ?) in fog water (pH 3–7). We find that a large fraction of the total Fe is present as dissolved Fe(II). The concentrations of Fe(II) increase both with exposure to light and with decreasing pH. The concentrations of dissolved iron in fog droplets are much higher than those measured in oxic surface waters and so atmospheric deposition may be a source of dissolved Fe(II) to surface waters, thereby increasing the availabil-ity of iron to aquatic biota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Faust, B. C. & Hoigné J. Atmos. Environ. 24A, 79–89 (1990).

    Article  ADS  Google Scholar 

  2. Jacob, D. J., Gottlieb, E. W. & Prather, M. J. J. geophys. Res. 94, 12,975–13,002 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Weschler, C. J., Mandich, M. L. & Graedel, T. E. J. geophys. Res. 91, 5189–5204 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Graedel, T. E., Mandich, M. L. & Weschler, C. J. J. geophys. Res. 91, 5205–5221 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Hoffmann, M. R. & Jacob, D. J. in SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations Acid Precipitation Series Vol. 3 (ed. Calvert, J. C.) 101–172 (Butterworth, Boston, 1984).

    Google Scholar 

  6. Martin, L. R. in SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations Acid Precipitation Series Vol. 3 (ed. Calvert, J. C.) 63–100 (Butterworth, Boston, 1984).

    Google Scholar 

  7. Munger, J. W., Jacob, D. J., Waldman, J. M. & Hoffmann, M. R. J. geophys. Res. 88, 5109–5121 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, C. A., Sigg, L. & Zobrist, J. Atmos. Environ. 21, 2365–2374 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Czuczwa, J., Leuenberger, C. & Giger, W. Atmos. Environ. 22, 907–916 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Sulzberger, B., Suter, D., Siffert, C., Banwart, S. & Stumm, W. Mar. Chem. 28, 127–144 (1989).

    Article  CAS  Google Scholar 

  11. Faust, B. C. & Hoffmann, M. R. Environ. Sci. Technol. 20, 943–948 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Waite, T. D. in Geochemical Processes at Mineral Surfaces American Chemical Society Symp. Ser. 323 (eds Davis, J. A. & Hayes, K. F.) 426–445 (American Chemical Society, Washington, 1986).

    Google Scholar 

  13. Wehrli, B. in Aquatic Chemical Kinetics (ed. Stumm, W.) (Wiley, New York, in the press).

  14. Hoigné, J. in Proc. ARGE ALP Int. Symp. 166–175 (Gesellschaft für Strahlen-und Umweltforschung, Munich, 1988).

    Google Scholar 

  15. Lelieveld, J. & Crutzen, P. J. Nature 343, 227–233 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Kraft, J. & van Eldik, R. Atmos. Environ. 23, 2708–2713 (1989).

    Article  ADS  Google Scholar 

  17. Dasgupta, P. K., Mitchell, P. A. & West, P. W. Atmos. Environ. 13, 775–782 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Fuzzi, S. et al. J. geophys. Res. 93, 11,141–11,151 (1988).

    Article  ADS  Google Scholar 

  19. Duce, R. A., Arimoto, R., Ray, B. J., Unni, C. K. & Harder, P. J. J. geophys. Res. 88, 5321–5342 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Jacob, D. J., Waldman, J. M., Haghi, M., Hoffmann, M. R. & Flagan, R. C. Rev. Sci. Instrum. 56, 1291–1293 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Mallant, R. in Chemistry and Physics of Fogwater Collection (eds Jaeschke, W. & Enderle, K. H.) 123–137 (Gesellschaft für Strahlen- und Umweltforschung, Munich, 1988).

    Google Scholar 

  23. Stookey, L. L. Analyt. Chem. 42, 779–781 (1970).

    Article  CAS  Google Scholar 

  24. Siffert, C. thesis, Swiss Fed. Inst. of Technol., Zürich (1989).

  25. Dong, S. & Dasgupta, P. K. Environ. Sci. Technol. 21, 581–588 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behra, P., Sigg, L. Evidence for redox cycling of iron in atmospheric water droplets. Nature 344, 419–421 (1990). https://doi.org/10.1038/344419a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344419a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing