Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA

Abstract

THE discovery of RNA enzymes1,2 has, for the first time, provided a single molecule that has both genetic and catalytic properties. We have devised techniques for the mutation, selection and amplification of catalytic RNA, all of which can be performed rapidly in vitro3. Here we describe how these techniques can be integrated and performed repeatedly within a single reaction vessel. This allows evolution experiments to be carried out in response to artificially imposed selection constraints. We worked with the Tetrahymena ribozyme, a self-splicing group I intron derived from the large ribosomal RNA precursor of Tetrahymena thermophila that catalyses sequence-specific phosphoester transfer reactions involving RNA substrates4,5. It consists of 413 nucleotides, and assumes a well-defined secondary and tertiary structure responsible for its catalytic activity. We selected for variant forms of the enzyme that could best react with a DNA substrate. This led to the recovery of a mutant form of the enzyme that cleaves DNA more efficiently than the wild-type enzyme. The selected molecule represents the discovery of the first RNA enzyme known to cleave single-stranded DNA specifically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kruger, K. et al. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  3. Joyce, G. F. Gene 82, 83–87 (1989).

    Article  CAS  Google Scholar 

  4. Zaug, A. J. & Cech, T. R. Science 229, 1060–1064 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Kay, P. S. & Inoue, T. Nature 327, 343–346 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A. & Scazzocchio, C. Nature 300, 719–724 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Michel, F., Jacquier, A. & Dujon, B. Biochemie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  8. Michel, F. & Dujon, B. EMBO J. 2, 33–38 (1983).

    Article  CAS  Google Scholar 

  9. Kwoh, D. Y. et al. Proc. natn. Acad. Sci. U.S.A. 86, 1173–1177 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Joyce, G. F. in Molecular Biology of RNA. UCLA Symposia on Molecular and Cellular Biology Vol. 94 (ed. Cech, T. R.) 361–371 (Liss, New York, 1989).

    Google Scholar 

  11. Chamberlin, M. & Ryan, T. in The Enzymes (ed. Boyer, P.) 87–108 (Academic, New York, 1982).

    Google Scholar 

  12. Joyce, G. F. & Inoue, T. Nucleic Acids Res. 17, 711–722 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zaug, A. J., Been, M. D. & Cech, T. R. Nature 324, 429–433 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Cech, T. R. Science 236, 1532–1539 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Inoue, T., Sullivan, F. X. & Cech, T. R. J. molec. Biol. 189, 143–165 (1986).

    Article  CAS  Google Scholar 

  16. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Waring, R. B., Towner, P., Minter, S. J. & Davies, R. W. Nature 321, 133–139 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Been, M. D. & Cech, T. R. Cell 47, 207–216 (1986).

    Article  CAS  Google Scholar 

  20. Milman, G., Langridge, R. & Chamberlin, M. J. Proc. natn. Acad. Sci. U.S.A. 57, 1804–1810 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Wang, A.H.-J. et al. Nature 229, 601–604 (1982).

    Article  ADS  Google Scholar 

  22. Woodson, S. A. & Cech, T. R. Cell 57, 335–345 (1989).

    Article  CAS  Google Scholar 

  23. Burke, J. M. et al. Nucleic Acids Res. 15, 7217–7221 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, D., Joyce, G. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990). https://doi.org/10.1038/344467a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344467a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing