Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å

Abstract

The three-dimensional crystal structure of seryl-transfer RNA synthetase from Escherichia coli, refined at 2.5 Å resolution, is described. It has an N-terminal domain that forms an antiparallel α helical coiled-coil, stretching 60 Å out into the solvent and stabilized by interhelical hydrophobic interactions and an active-site α – β domain based around a seven-stranded antiparallel β sheet. Unlike the three other known synthetase structures, the enzyme contains no classical nucleotide-binding fold, and is the first representative of a second class of aminoacyl-tRNA synthetase structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schimmel, P. A. Rev. Biochem. 56, 125–158 (1987).

    Article  CAS  Google Scholar 

  2. Crick, F. H. C. Symp. Soc. exp. Biol. 12, 138–163 (1958).

    CAS  PubMed  Google Scholar 

  3. Brick, P. & Blow, D. M. J. molec. Biol. 194, 287–297 (1987).

    Article  CAS  Google Scholar 

  4. Brick, P., Bhat, T. N. & Blow, D. M. J. molec. Biol. 208, 83–98 (1989).

    Article  CAS  Google Scholar 

  5. Brunie et al. J. molec. Graph. 5, 18–21 (1987).

    Article  CAS  Google Scholar 

  6. Rossmann, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Blow, D. M. et al. J. molec. Biol. 171, 571–576 (1983).

    Article  CAS  Google Scholar 

  8. Webster, T. A., Lathrop, R. H. & Smith, T. F. Biochemistry 26, 6950–6957 (1987).

    Article  CAS  Google Scholar 

  9. Burbaum, J. J., Starzyk, R. M. & Schimmel, P. Proteins 7, 99–111 (1990).

    Article  CAS  Google Scholar 

  10. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Science 248, 1135–1142 (1989).

    Article  ADS  Google Scholar 

  11. Grosjean, H., Nicoghosian, K., Haumont, E., Söll, D. & Cedergren, R. Nucleic Acids Res. 13, 5697–5706 (1985).

    Article  CAS  Google Scholar 

  12. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M-A. & Böck, A. Nature 331, 723–725 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Normanly, J., Ogden, R. C., Horvayh, S. J. & Abelson, J. Nature 321, 213–219 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Schulman, L. H. & Pelka, H. Nucleic Acids Res. 18, 285–289 (1990).

    Article  CAS  Google Scholar 

  15. Härtlein, M., Madern, D. & Leberman, R. Nucleic Acids Res. 15, 1005–1017.

  16. Leberman, R., Berthet-Colominas, C., Cusack, S. & Härtlein, M. J. molec. Biol. 193, 423–425 (1987).

    Article  CAS  Google Scholar 

  17. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  18. Cohen, C. & Parry, D. A. D. Proteins 7, 1–15 (1990).

    Article  CAS  Google Scholar 

  19. Richardson, J. S. & Richardson, D. C. in Prediction of Protein Structure and the Principles of Protein Conformation (ed. Fasman, G. D.) 1–98 (Plenum New York, 1989).

    Book  Google Scholar 

  20. Roth, M. et al. Nature 340, 659–662 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Hountondji, C., Dessen, P. & Blanquet, S. Biochimie 68, 1071–1078 (1986).

    Article  CAS  Google Scholar 

  22. Jacobo-Molina, A., Peterson, R. & Yang, D. C. H. J. biol. Chem. 264, 16608–16612 (1989).

    CAS  PubMed  Google Scholar 

  23. Anselme, J. & Härtlein, M. Gene 84, 481–485 (1989).

    Article  CAS  Google Scholar 

  24. Léveque, F., Plateau, P., Dessen, P. & Blanquet, S. Nucleic Acids Res. 18, 305–311 (1990).

    Article  Google Scholar 

  25. Eriani, G. et al. Nature 347, 203–206 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Ruff, M. thesis, Univ. Louis Pasteur, Strasburg (1990).

  27. Wetzel, R. Origins of Life 9, 39–50 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Härtlein, M. & Madern, D. Nucleic Acids Res. 15, 10199–10210 (1987).

    Article  Google Scholar 

  29. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. Science 240, 1759–1764 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Vinson, C. R., Sigler, P. B. & McKnight, S. L. Science 246, 911–916 (1989).

    Article  ADS  CAS  Google Scholar 

  31. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Science 243, 538–542 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Oas, T. G., McIntosh, L. P., O'Shea, E. K., Dahlquist, F. W. & Kim, P. S. Biochemistry 29, 2891–2894 (1990).

    Article  CAS  Google Scholar 

  33. Banner, D. W., Kokkinidis, M. & Tsernoglou, D. J. molec. Biol. 196, 657–675 (1987).

    Article  CAS  Google Scholar 

  34. Helmer-Citterich, M., Anceschi, M. M., Banner, D. W. & Cesareni, G. EMBO J. 7, 557–566 (1988).

    Article  CAS  Google Scholar 

  35. Moine, H. et al. Proc. natn. Acad. Sci. U.S.A. 85, 7892–7896 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Putzer, H., Brakhage, A. A. & Grunberg-Manago, M. J. Bact. 172, 4593–4602 (1990).

    Article  CAS  Google Scholar 

  37. Leslie, A. Acta crystallogr. 43, 134–137 (1974).

    Article  Google Scholar 

  38. Jones, T. A. & Thirup, S. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  39. Fujinaga, M., Gros, P. & van Gunsteren, W. F. J. appl. Crystallogr. 22, 1–8 (1989).

    Article  CAS  Google Scholar 

  40. Brunie, S., Zelwer, C. & Risler, J-L. J. molec. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusack, S., Berthet-Colominas, C., Härtlein, M. et al. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990). https://doi.org/10.1038/347249a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347249a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing