Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrophoretic assembly of colloidal crystals with optically tunable micropatterns

Abstract

The production of materials with micrometre- and submicrometre-scale patterns is of importance in a range of applications, such as photonic materials1,2, high-density magnetic data storage devices3, microchip reactors4 and biosensors5. One method of preparing such structures is through the assembly of colloidal particles5,6,7,8,9,10. Micropatterned colloidal assemblies have been produced with lithographically patterned electrodes5,11 or micromoulds12. Here we describe a different method that combines the well-known photochemical sensitivity of semiconductors13,14 with electric-field-induced assembly15,16 to create ordered arrays of micrometre-sized colloidal particles with tunable patterns. We show that light affects the assembly processes, and demonstrate how to produce patterns using electrophoretic deposition in the presence of an ultraviolet (UV) illumination motif. The distribution of current across an indium tin oxide (ITO) electrode can be altered by varying the illumination intensity: during the deposition process, this causes colloidal particles to be swept from darkened areas into lighted regions. Illumination also assists in immobilizing the particles on the electrode surface. Although the details of these processes are not well understood, the patterning effects of the UV light are discussed in terms of alterations in the current density15,17 that affects particle assembly on an ITO electrode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the apparatus for particle assembly and pattern formation.
Figure 2: Process schemes for pattern formation.
Figure 3: Scanning electron microscope image of a pattern produced by method B.

Similar content being viewed by others

References

  1. Lin, S. -Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos, J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 ( 1998).

    Article  ADS  CAS  Google Scholar 

  2. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 ( 1999).

    Article  CAS  Google Scholar 

  3. Haginoya, C., Ishibashi, M. & Koike, K. Nanostructure array fabrication with a size-controllable natural lithography. Appl. Phys. Lett. 71, 2934–2936 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Gau, H., Herminghaus, S., Lenz, P. & Lipowsky, R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283, 46–49 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Velev, O. D. & Kaler, E. W. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15, 3693–3698 (1999).

    Article  CAS  Google Scholar 

  6. Andres, R. P. et al. Research opportunities on clusters and cluster-assembled materials - a Department of Energy, Council on Materials Science panel report. J. Mater. Res. 4, 704–736 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Inanc, I. T. & Watson, G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    Article  ADS  Google Scholar 

  8. Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Asher, S. A., Holtz, J., Weissman, J. & Pan, G. Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing. MRS Bull. 23, 44–50 (1998).

    Article  CAS  Google Scholar 

  10. Bertone, J. F., Jiang, P., Hwang, K. S., Mittleman, D. M. & Colvin, V. L. Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys. Rev. Lett 83, 300–303 ( 1999).

    Article  ADS  CAS  Google Scholar 

  11. Yeh, S. -R., Seul, M. & Shraiman, B. I. Assembly of ordered colloidal aggregates by electric-field-induced fluid flow. Nature 386, 57– 59 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Kim. E., Xia, Y. N. & Whitesides, G. M. Two- and three dimensional crystallization of polymeric microspheres by micromolding in capillaries. Adv. Mater. 8, 245– 247 (1996).

    Article  Google Scholar 

  13. Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, 1980).

    Book  Google Scholar 

  14. Bocarsly, A. B., Tachikawa, H. & Faulkner, L. R. in Laboratory Techniques in Electroanalytical Chemistry  2nd edn (eds Kissinger, P. T. & Heineman, W. R.) 855 –898 (Marcel Dekker, New York, 1996 ).

    Google Scholar 

  15. Trau, M., Saville, D. A. & Aksay, I. A. Field-induced layering of colloidal crystals. Science 272, 706–709 ( 1996).

    Article  ADS  CAS  Google Scholar 

  16. Böhmer, M. In situ observation of 2-dimensional clustering during electrophoretic deposition. Langmuir 12, 5747–5750 (1996).

    Article  Google Scholar 

  17. Trau, M., Saville, D. A. & Aksay, I. A. Assembly of colloidal crystals at electrode interfaces. Langmuir 13, 6375–6381 (1997).

    Article  CAS  Google Scholar 

  18. Richetti, P., Prost, J. & Barois, P. Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres. J. Phys. Lett. 45, 1137–1143 (1984).

    Article  CAS  Google Scholar 

  19. Richetti, P., Prost, J. & Barois, P. in Physics of Complex and Supermolecular Fluids (eds Safran, S. A. & Clark, N. A.) 387–411 (Wiley, New York, 1987).

    Google Scholar 

  20. Giersig, M. & Mulvaney, P. Formation of ordered 2-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97, 6334–6336 ( 1993).

    Article  CAS  Google Scholar 

  21. Giersig, M. & Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  22. Solomentsev, Y., Böhmer, M. & Anderson, J. L. Particle clustering and pattern formation during electrophoretic deposition: A hydrodynamic model. Langmuir 13, 6058–6068 (1997).

    Article  CAS  Google Scholar 

  23. Russel, W. B., Saville, D. A. & Schowalter, W. R. Colloidal Dispersions (Cambridge Univ. Press, Cambridge, UK, 1989).

    Book  Google Scholar 

  24. van den Meerakker, J. E. A. M., Meulenkap, E. A. & Scholten, M. (Photo)electrochemical characterization of tin-doped indium oxide. J. Appl. Phys. 74, 3282–3288 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Benkhelifa, F., Ashrit, P. V., Bader, G., Girouard, F. E. & Truong, V.-V. Near room temperature deposited indium tin oxide films as transparent conductors and counterelectrodes in electrochromic systems. Thin Solid Films 232, 83– 86 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Murali, K. R. et al. Characterization of indium tin oxide films. Surf. Coatings Technol. 35, 207–213 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Xiao and H. F. Poon for assistance in the experimental work, and A. B. Bocarsly for discussions about semiconductor properties. This work was supported by a MURI grant from the US Army Research Office, NASA (Microgravity Science and Applications Division), and a MRSEC program of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Aksay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, R., Saville, D. & Aksay, I. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404, 56–59 (2000). https://doi.org/10.1038/35003530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003530

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing