Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central nervous system control of food intake

Abstract

New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model showing how a change in body adiposity is coupled to compensatory changes of food intake.
Figure 2: Role of arcuate nucleus neurons in adiposity signalling.
Figure 3: Diagrams of rat brain, showing major hypothalamic regions implicated in adiposity signalling and regulation of food intake.
Figure 4: NPY/AGRP and POMC/CART neurons in the arcuate nucleus, adjacent to the third ventricle, are first-order neurons in the hypothalamic response to the circulating adiposity signals insulin and leptin.
Figure 5: Locations of candidate second-order neurons involved in the hypothalamic response to insulin and leptin adiposity signalling.
Figure 6: Neuroanatomical model of pathways by which adiposity signals, leptin (secreted by adipocytes) and insulin (secreted by the endocrine pancreas in proportion to adiposity), interact with central autonomic circuits regulating meal size.

Similar content being viewed by others

References

  1. Edholm, O. G. Energy balance in man. J. Human Nutr. 31, 413–431 (1977).

    CAS  Google Scholar 

  2. Montague, C. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903– 908 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 330 –331 (1998).

    Article  Google Scholar 

  4. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genet. 20, 113– 114 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Yeo, G. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature Genet. 20, 111– 112 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Harris, R. B. S., Kasser, T. R. & Martin, R. J. Dynamics of recovery of body composition after overfeeding, food restriction or starvation of mature female rats. J. Nutr. 116, 2536–2546 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat . Proc. R. Soc. Lond. B 140, 579– 592 (1953).

    ADS  Google Scholar 

  8. Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84, 488– 495 (1973).

    Article  CAS  PubMed  Google Scholar 

  9. Baura, G. et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain. J. Clin. Invest. 92, 1824– 1830 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woods, S., Lotter, E., McKay, L. & Porte, D. J. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 ( 1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue . Nature 372, 425–432 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bagdade, J. D., Bierman, E. L. & Porte, D. Jr The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J. Clin. Invest. 46, 1549– 1557 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Considine, R.V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Eng. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz, M.W. et al. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nature Med. 2, 589–593 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Baskin, D. G., Wilcox, B. J., Figlewicz, D. P. & Dorsa, D. M. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 11, 107–111 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  16. Baskin, D., Breininger, J. & Schwartz, M. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 48, 828–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Cheung, C., Clifton, D. & Steiner, R. Proopimelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Weigle, D.S. et al. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J. Clin. Invest. 96, 2065–2070 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campfield, L., Smith, F., Gulsez, Y., Devos, R. & Burn, P. Mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546– 549 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sipols, A. J., Baskin, D. G. & Schwartz, M. W. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44, 147–151 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  21. Porte, D. J., Woods, S., Baskin, D., Seeley, R. & Schwartz, M. Obesity, diabetes and the central nervous system. Diabetologia 41, 863–881 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz, M.W. et al. Evidence that plasma leptin and insulin levels are associated with body adiposity via different mechanisms. Diabetes Care 20, 1476–1481 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kahn, S.E. et al. Quantification of the relationship between insulin sensitivity and B-cell function in human subjects: evidence for a hyperbolic function . Diabetes 42, 1663–1672 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Polonsky, K. S., Given, B. D. & VanCauter, E. Twenty-four hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Invest. 81, 442–448 ( 1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller, W. et al. Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 139, 551–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684– 688 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Leedom, L. J. & Meehan, W. P. The psychoneuroendocrinology of diabetes mellitus in rodents. Psychoneuroendocrinology 14, 275–294 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Havel, P. et al. Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats: reversal by insulin. Am. J. Physiol. 274, R1482–R1491 (1998).

    CAS  PubMed  Google Scholar 

  29. Hathout, E. et al. Changes in plasma leptin during the treatment of diabetic ketoacidosis. J. Clin. Endocrinol. Metab. 84, 4545–4548 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Sindelar, D. et al. Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes 48, 1275– 1280 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chua, S.C. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (Leptin) receptor. Science 271, 994–996 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mantzoros, C. et al. Severe leptin resistance in brown fat-deficient uncoupling protein promoter-driven diphtheria toxin A mice despite suppression of hypothalamic neuropeptide Y and circulating corticosterone. Diabetes 47, 230–238 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Marsh, D.J. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genet. 21, 119–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wilson, B. et al. Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology 140, 2387–2397 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Bjorbaek, C. et al. Expression of leptin receptor isoforms in rat brain microvessels . Endocrinology 139, 3485– 3491 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Caro, J.F. et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348, 159–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Bjorbaek, C., Elmquist, J., Frantz, J., Shoelson, S. & Flier, J. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Stanley, B. G., Kyrkouli, S. E., Lampert, S. & Leibowitz, S. F. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7, 1189–1192 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Billington, C. J., Briggs, J. E., Grace, M. & Levine, A. S. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am. J. Physiol. 260, R321–R327 ( 1991).

    CAS  PubMed  Google Scholar 

  40. Zarjevski, N., Cusin, I., Vetter, R., Rohner-Jeanrenaud, F. & Jeanrenaud, B. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity . Endocrinology 133, 1753– 1758 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Kalra, S. P., Dube, M. G., Sahu, A., Phelps, C. P. & Kalra, P. Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc. Natl Acad. Sci. USA 88, 10931–10935 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. White, J. D. & Kershaw, M. Increased hypothalamic neuropeptide Y expression following food deprivation. Mol. Cell. Neurosci. 1, 41–48 (1989).

    Article  Google Scholar 

  43. Wilding, J. P.H. et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ ob) mouse. Endocrinology 132, 1939– 1944 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz, M.W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  45. Stephens, T.W. et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377, 530– 534 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Erickson, J. C., Hollopeter, G. & Palmiter, R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Williams, G. et al. Increased neuropeptide Y concentrations in specific hypothalamic regions of streptozocin-induced diabetic rats. Diabetes 38, 321–327 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Erickson, J. C., Clegg, K. E. & Palmiter, R. D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Cone, R. et al. The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Rec. Prog. Horm. Res. 51, 287–318 (1996).

    CAS  PubMed  Google Scholar 

  50. Bray, G. A., Fisler, J. & York, D. A. Neuroendocrine control of the development of obesity: understanding gained from studies of experimental animal models. Front. Neuroendocrinol. 11, 128–181 (1990).

    Google Scholar 

  51. Kow, L. & Pfaff, D. The effects of the TRH-metabolite cyclo(His-Pro) and its analogs on feeding. Pharmacol. Biochem. Behav. 38, 359–364 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  52. Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72– 76 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Luheshi, G., Gardner, J., Rushforth, D., Loudon, A. & Rothwell, N. Leptin actions on food intake and body temperature are mediated by IL-1. Proc. Natl Acad. Sci. USA 96, 7047–7052 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mountjoy, K., Mortrud, M., Low, M., Simerly, R. & Cone, R. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  55. Fan, W., Boston, B., Kesterson, R., Hruby, V. & Cone, R. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385 , 165–168 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Miller, M. et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev. 7, 454–467 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  58. Shutter, J. et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 11, 593–602 (1997).

    CAS  PubMed  Google Scholar 

  59. Ollmann, M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Hahn, T., Breininger, J., Baskin, D. & Schwartz, M. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Broberger, C., Johansen, J., Johasson, C., Schalling, M. & Hokfelt, T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA 95, 15043 –15048 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hagan, M. et al. Effect of agouti-related peptide (83-132) on food intake: competitive melanocortin-receptor antagonism on short but not long term effects. Am. J. Physiol. (in the press).

  63. Rossi, M. et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo . Endocrinology 139, 4428– 4431 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Stellar, E. The physiology of motivation. Psychol. Rev. 61, 5 (1954).

    Article  CAS  PubMed  Google Scholar 

  65. Woods, S., Seeley, R., Porte, D. J. & Schwartz, M. Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Elias, C. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375– 1385 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Satoh, N. et al. The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci. Lett. 224, 149– 152 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Tang-Christensen, M., Holst, J., Hartmann, B. & Vrang, N. The arcuate nucleus is pivotal in mediating the anorectic effects of centrally administered leptin . Neuroreport 10, 1183– 1187 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Dawson, R., Pelleymounter, M., Millard, W., Liu, S. & Eppler, B. Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. Am. J. Physiol. 273, E202–E206 (1997).

    CAS  PubMed  Google Scholar 

  70. Schwartz, M. et al. Leptin increases hypothalamic proopiomelanocortin (POMC) mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Thornton, J., Cheung, C., Clifton, D. & Steiner, R. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 138, 5063–5066 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Hagan, M. et al. Role of the CNS melanocortin system in the response to overfeeding . J. Neurosci. 19, 2362– 2367 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seeley, R. et al. Melanocortin receptors in leptin effects. Nature 390, 349 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Elmquist, J., Maratos-Flier, E., Saper, C. & Flier, J. Unraveling the central nervous system pathways underlying responses to leptin . Nature Neurosci. 1, 445– 450 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Elmquist, J., Elias, C. & Saper, C. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22, 221– 232 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Stanley, B. G., Willett, V. L. III, Donias, H. W., Ha, L. H. & Spears, L. C. The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating . Brain Res. 630, 41–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Dallman, M.F. et al. Feast and famine: Critical role of glucocorticoids with insulin in daily energy flow. Front. Neuroendocrinol. 14, 303–347 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Verbalis, J., Blackburn, R., Hoffman, G. & Stricker, E. Establishing behavioral and physiological functions of central oxytocin: insights from studies of oxytocin and ingestive behaviors. Adv. Exp. Med. Biol. 395, 209–225 ( 1995).

    CAS  PubMed  Google Scholar 

  79. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243– 247 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Shimada, M., Tritos, N., Lowell, B., Flier, J. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 39, 670– 674 (1998).

    Article  ADS  CAS  Google Scholar 

  81. Saito, Y. et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400, 265– 269 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Chambers, J. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400 , 261–265 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G-protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  85. Hagan, J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl Acad. Sci. USA 96, 10911–10916 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chemelli, R. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437– 451 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Figlewicz, D. P., Stein, L. J., West, D., Porte, D. Jr & Woods, S. C. Intracisternal insulin alters sensitivity to CCK-induced meal suppression in baboons. Am. J. Physiol. 250, R856–R860 (1986).

    CAS  PubMed  Google Scholar 

  88. Woods, S. C. & Strubbe, J. H. The psychobiology of meals. Psychonomic Bull. Rev. 1, 141–155 (1994).

    Article  CAS  Google Scholar 

  89. Leibowitz, S. & Alexander, J. Analysis of neuropeptide Y-induced feeding: dissociation of Y1 and Y2 receptor effects on natural meal patterns . Peptides 12, 1251–1260 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Flynn, M., Scott, T., Pritchard, T. & Plata-Salaman, C. Mode of action of OB protein (leptin) on feeding. Am. J. Physiol. 275, R174–R179 (1998).

    CAS  PubMed  Google Scholar 

  91. Ritter, S., Dinh, T. & Friedman, M. Induction of Fos-like immunoreactivity (Fos-li) and stimulation of feeding by 2,5-anhydro-D-mannitol (2,5-AM) require the vagus nerve. Brain Res. 646, 53– 64 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Travers, S. & Norgren, R. Gustatory neural processing in the hindbrain. Annu. Rev. Neurosci. 10, 595– 632 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Friedman, M., Harris, R., Ji, H., Ramirez, I. & Tordoff, M. Fatty acid oxidation affects food intake by altering hepatic energy status. Am. J. Physiol. 276, R1046–R1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Moran, T. & Schwartz, G. Neurobiology of cholecystokinin . Crit. Rev. Neurobiol. 9, 1– 28 (1994).

    CAS  PubMed  Google Scholar 

  95. Grill, H. & Smith, G. Cholecystokinin decreases sucrose intake in chronic decerebrate rats. Am. J. Physiol. 254, R853–R856 (1988).

    CAS  PubMed  Google Scholar 

  96. Matson, C. & Ritter, R. Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. Am. J. Physiol. 276, R1038–R1045 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  97. Emond, M., Schwartz, G., Ladenheim, E. & Moran, T. Central leptin modulates behavioral and neural responsivity to CCK. Am. J. Physiol. 276, R1545–R1549 (1999).

    CAS  PubMed  Google Scholar 

  98. Ter Horst, G., de Boer, P., Luiten, P. & van Willigen, J. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience 31, 785–797 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Grill, H., Ginsberg, A., Seeley, R. & Kaplan, J. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J. Neurosci. 18, 10128– 10135 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mercer, J., Moar, K. & Hoggard, N. Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain. Endocrinology 139, 29–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Bronstein, D., Schafer, M., Watson, S. & Akil, H. Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res. 587, 269– 275 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Leibowitz, S., Roossin, P. & Rosenn, M. Chronic norepinephrine injection into the hypothalamic paraventricular nucleus produces hyperphagia and increased body weight in the rat. Pharmacol. Biochem. Behav. 21, 801–808 (1984).

    Article  CAS  PubMed  Google Scholar 

  103. Oltmans, G. Norepinephrine and dopamine levels in hypothalamic nuclei of the genetically obese mouse (ob/ob). Brain Res. 273, 369–373 (1983).

    Article  CAS  PubMed  Google Scholar 

  104. Brunetti, L., Michelotto, B., Orlando, G. & Vacca, M. Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. Eur. J. Pharmacol. 372, 237–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Salamone, J., Mahan, K. & Rogers, S. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol. Biochem. Behav. 44, 605–610 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Szczypka, M. et al. Feeding behavior in dopamine-deficient mice. Proc. Natl Acad. Sci. USA 96, 12138–12143 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pothos, E., Creese, I. & Hoebel, B. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J. Neurosci. 15, 6640–6650 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Figlewicz, D., Endocrine regulation of neurotransmitter transporters. Epilepsy Res. 37, 203–210 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  109. Patterson, T. et al. Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology 68, 11– 20 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Leibowitz, S. & Alexander, J. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol. Psychiatry 44, 851–864 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Nonogaki, K., Strack, A., Dallman, M. & Tecott, L. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT 2C receptor gene. Nature Med. 4, 1152 –1156 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Calapai, G. et al. Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J. Clin. Invest. 104, 975–982 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yaswen, L., Diehl, N., Brennam, M. & Hochgeschwender, V. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med. 5, 1066– 1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Farooqi, I. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Cheatham, B. & Kahn, C. Insulin action and the insulin signaling network. Endocr. Rev. 16, 117– 142 (1995).

    CAS  PubMed  Google Scholar 

  116. Baskin, D. G., Sipols, A. J., Schwartz, M. W. & White, M. F. Insulin receptor substrate-1 (IRS-1) expression in rat brain. Endocrinology 134, 1952–1955 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Kapeller, R. et al. Tyrosine phosphorylation of tub and its association with Src homology 2 domain-containing proteins implicate tub in intracellular signaling by insulin. J. Biol. Chem. 274, 24980– 24986 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Tartaglia, L.A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Tartaglia, L. A. The leptin receptor. J. Biol. Chem. 272, 6093–6096 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Spanswick, D., Smith, M., Groppi, V., Logam, S. & Ashford, M. Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 390, 521–525 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Dunn- Meynell, A., Rawson, N. & Levin, B. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Assistance in manuscript preparation provided by L. Walters and in figure preparation by M. Baskin is gratefully acknowledged. This work was supported by NIH grants, the Diabetes Endocrinology Research Center and Clinical Nutrition Research Unit of the University of Washington, and the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, M., Woods, S., Porte, D. et al. Central nervous system control of food intake. Nature 404, 661–671 (2000). https://doi.org/10.1038/35007534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing