Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete photonic bandgaps in 12-fold symmetric quasicrystals

Abstract

Photonic crystals are attracting current interest for a variety of reasons, such as their ability to inhibit the spontaneous emission of light1,2. This and related properties arise from the formation of photonic bandgaps, whereby multiple scattering of photons by lattices of periodically varying refractive indices acts to prevent the propagation of electromagnetic waves having certain wavelengths. One route to forming photonic crystals is to etch two-dimensional periodic lattices of vertical air holes into dielectric slab waveguides3,4,5,6,7. Such structures can show complete photonic bandgaps8,9,10, but only for large-diameter air holes in materials of high refractive index (such as gallium arsenide, n = 3.69), which unfortunately leads to significantly reduced optical transmission when combined with optical fibres of low refractive index. It has been suggested that quasicrystalline (rather than periodic) lattices can also possess photonic bandgaps11,12,13,14. Here we demonstrate this concept experimentally and show that it enables complete photonic bandgaps—non-directional and for any polarization—to be realized with small air holes in silicon nitride (n = 2.02), and even glass (n = 1.45). These properties make photonic quasicrystals promising for application in a range of optical devices14,15,16,17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the basic quasicrystal elementary unit and its implementation in a planar waveguide.
Figure 2: Theoretical calculation.
Figure 3: Experimental results.
Figure 4: Angular dependence of the primary PBG and reproducibility of transmittance.

Similar content being viewed by others

References

  1. Yablonovitch,E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Joannopoulos,J. D., Meade,R. D. & Winn,J. N. Photonic Crystals (Princeton Univ. Press, New York, 1995).

    MATH  Google Scholar 

  3. Charlton,M. D. B. & Parker,G. J. Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide. Mater. Sci. Eng. B 49, 155–165 (1997).

    Article  Google Scholar 

  4. Joannopoulos,J. D., Villeneuve,P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Gadot,F. et al. Experimental demonstration of complete photonic bandgap in graphite structure. Appl. Phys. Lett 71, 1780– 1782 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Krauss,T. F., De La Rue,R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Atkin,D. N., Russell,P. S. J., Birks,T. A. & Roberts,P. J. Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure. J. Mod. Opt 43 , 1035–1053 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Plihal,M. & Maradudin,A. A. Photonic band-structure of 2-dimensional systems—the triangular lattice. Phys. Rev. B 44, 8565–8571 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Cassagne,D., Jouanin,C. & Bertho,D. Hexagonal photonic-band-gap structures. Phys. Rev. B 53, 7134–7142 ( 1996).

    Article  ADS  CAS  Google Scholar 

  10. Barra,A., Cassagne,D. & Jouanin, C. Existence of two-dimensional absolute photonic band gaps in the visible. Appl. Phy. Lett. 72, 627–629 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Chan,Y. S., Chan,C. T. & Liu,Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956– 959 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Cheng,S. S. M., Li,L., Chan,C. T. & Zhang,Z. Q. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems. Phys. Rev. B 59, 4091–4099 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Krauss,T. F. & De la Rue,R. M. Photonic crystals in the optical regime—past, present and future. Prog. Quant. Electron. 23, 51–96 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Charlton,M. D. B., Parker,G. J. & Zoorob, M. E. Recent developments in the design and fabrication of visible photonic band gap waveguide devices. J. Mater. Sci. 10 (Materials in Electronics), 429– 440 (1999).

    CAS  Google Scholar 

  15. Foresi,J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 ( 1997).

    Article  ADS  CAS  Google Scholar 

  16. Temelkuran,B. & Ozbay,E. Experimental demonstration of photonic crystal based waveguides. Appl. Phys. Lett 74, 486–488 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Kosada,H. et al. Superprism phenomena in photonic crystals. Phys. Rev. B 58, R10096–R10099 ( 1998).

    Article  ADS  Google Scholar 

  18. Ohetera,Y., Sato,T., Kawashima,T., Tamamura,T. & Kawakami, S. Photonic crystal polarisation splitters. Electron. Lett. 35, 1271–1272 (1999).

    Article  Google Scholar 

  19. McGurn,A. R. & Maradudin,A. A. Weak transverse localisation of light scattered incoherently from a one-dimensional random metal-surface. J. Opt. Soc. Am B 10, 539– 545 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Anderson,C. M. & Giapis,K. P. Symmetry reduction in group 4mm photonic crystals. Phys. Rev. B 56, 7313–7320 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Zoorob,M. E., Charlton,M. D. B. & Parker, G. J. Proc. Inst. Phys. PREP 99 161– 164 (1999).

  22. Oxborrow,M., Henley,C. L. Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals. Phys. Rev. B 48, 6966–6998 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Yee,K. S. Numerical solutions of initial boundary value problems involving Maxwell's equation in isotropic media. IEEE Trans. Antennas Propagat. AP-14, 302–307 (1966).

    ADS  MATH  Google Scholar 

  24. Netti,M. C., Charlton,M. D. B., Parker, G. J. & Baumberg,J. J. Visible photonic bandgap engineering in silicon nitride waveguides. Appl. Phys. Lett. (in the press).

  25. Feng,X. -P. & Arakawa,Y. Off-pane angle dependence of photonic band gap in a two-dimensional photonic crystal. IEEE. J. Quantum. Electron. 32, 535–542 ( 1996).

    Article  ADS  CAS  Google Scholar 

  26. Labilloy,D. et al. Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near infrared wavelengths. Phys. Rev. Lett 79, 4147– 4150 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Ho,K. M., Chan,C. T., Soukoulis,C. M., Biswas,R. & Sigalis,M. Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the holey-fibre group of the Southampton Optoelectronics Research Centre for supplying samples. This work was supported by the EPSRC, the HEFCE and the University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoorob, M., Charlton, M., Parker, G. et al. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000). https://doi.org/10.1038/35008023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008023

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing