Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phospholipase C and termination of G-protein-mediated signalling in vivo

Abstract

In Drosophila photoreceptors, phospholipase C (PLC) and other signalling components form multiprotein structures through the PDZ scaffold protein INAD. Association between PLC and INAD is important for termination of responses to light; the underlying mechanism is, however, unclear. Here we report that the maintenance of large amounts of PLC in the signalling membranes by association with INAD facilitates response termination, and show that PLC functions as a GTPase-activating protein (GAP). The inactivation of the G protein by its target, the PLC, is crucial for reliable production of single-photon responses and for the high temporal and intensity resolution of the response to light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73– 77 (1997).

    Article  CAS  Google Scholar 

  2. Devary, O. et al. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc. Natl. Acad. Sci. USA 84 , 6939–6943 (1987).

    Article  CAS  Google Scholar 

  3. Lee, Y. J., Dobbs, M. B., Verardi, M. L. & Hyde, D. R. dgq: a Drosophila gene encoding a visual system-specific G α-molecule . Neuron 5, 889–898 (1990).

    Article  CAS  Google Scholar 

  4. Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. Gq α-protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919–927 (1995).

    Article  CAS  Google Scholar 

  5. Bloomquist, B. T., et al. Isolation of a putative phospholipase C gene of Drosophila , norpA, and its role in phototransduction. Cell 54, 723–733 (1988).

    Article  CAS  Google Scholar 

  6. Selinger, Z. & Minke, B. Inositol lipid cascade of vision studied in mutant flies. Cold Spring Harb. Symp. Quant. Biol. 53 Pt 1, 333–341 (1988).

    Article  CAS  Google Scholar 

  7. Huber, A., Sander, P., Gobert, A., Bahner, M., Hermann, R. & Paulsen, R. The transient receptor potential protein (Trp), a putative store- operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. EMBO J. 15, 7036–7045 (1996).

    Article  CAS  Google Scholar 

  8. Shieh, B. H. & Zhu, M. Y. Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998 ( 1996).

    Article  CAS  Google Scholar 

  9. Shieh, B. H., Zhu, M. Y., Lee, J. K., Kelly, I. M. & Bahiraei, F. Association of INAD with NORPA is essential for controlled activation and deactivation of Drosophila phototransduction in vivo . Proc. Natl Acad. Sci. USA 94, 12682 –12687 (1997).

    Article  CAS  Google Scholar 

  10. Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18, 95–105 (1997).

    Article  CAS  Google Scholar 

  11. Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    Article  CAS  Google Scholar 

  12. van Huizen, R. et al. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J. 17, 2285–2297 (1998).

    Article  CAS  Google Scholar 

  13. Xu, X. Z., Choudhury, A., Li, X. & Montell, C. Coordination of an array of signaling proteins through homo- and heteromeric interactions between PDZ domains and target proteins. J. Cell Biol. 142, 545–555 (1998).

    Article  CAS  Google Scholar 

  14. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel s messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    Article  CAS  Google Scholar 

  15. Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G. & Ross, E. M. Phospholipase C-β 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70, 411–418 (1992).

    Article  CAS  Google Scholar 

  16. Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins . Proc. Natl. Acad. Sci. USA 96, 9539– 9544 (1999).

    Article  CAS  Google Scholar 

  17. Arshavsky, V. Y. & Pugh, E. N. Lifetime regulation of G protein-effector complex: emerging importance of RGS proteins. Neuron 20, 11–14 (1998).

    Article  CAS  Google Scholar 

  18. Makino, E. R., Handy, J. W., Li, T. & Arshavsky, V. Y. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS 9 and type 5 G protein β subunit. Proc. Natl Acad. Sci. USA 96, 1947–1952 (1999).

    Article  CAS  Google Scholar 

  19. Chen, C.-K., Burns, M. E., He, W., Wensel, T. G., Baylor, D. A. & Simon, M. I. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS 9-1. Nature 403, 557– 560 (2000).

    Article  CAS  Google Scholar 

  20. Baylor, D. A., Lamb, T. D. & Yau, K. W. Responses of retinal rods to single photons. J. Physiol. Lond. 288, 613–634 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeandle, S. & Spiegler, J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J. Gen. Physiol. 61, 552–571 (1973).

    Article  CAS  Google Scholar 

  22. Dodge, F. A., Jr, Knight, B. W. & Toyoda, J. Voltage noise in Limulus visual cells. Science 160, 88–90 (1968).

    Article  Google Scholar 

  23. Wu, C. F. & Pak, W. L. Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. 71, 249–268 ( 1978).

    Article  CAS  Google Scholar 

  24. Berridge, M. J. Capacitive calcium entry. Biochem. J. 312, 1–11 (1995).

    Article  CAS  Google Scholar 

  25. Yau, K. W. & Baylor, D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289–327 (1989).

    Article  CAS  Google Scholar 

  26. Stieve, H. Bumps, the elementary excitatory responses of invertebrates. in The Molecular Mechanism of Photoreception (ed. Stieve,H.) 199-230 (Springer Verlag, Berlin, 1986).

  27. Kirkwood, A., Weiner, D. & Lisman, J. E. An estimate of the number of G regulator proteins activated per excited rhodopsin in living Limulus ventral photoreceptors . Proc. Natl. Acad. Sci. USA 86, 3872– 3876 (1989).

    Article  CAS  Google Scholar 

  28. Fein, A., Payne, R., Corson, D. W., Berridge, M. J. & Irvine, R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature 311, 157– 160 (1984).

    Article  CAS  Google Scholar 

  29. Minke, B. & Stephenson, R. S. The characteristics of chemically induced noise in Musca photoreceptors. J. Comp. Physiol. 156, 339–356 (1985).

    Article  CAS  Google Scholar 

  30. Pak, W. L., Ostroy, S. E., Deland, M. C. & Wu, C. F. Photoreceptor mutant of Drosophia: is protein involved in intermediate steps of phototransduction? Science 194, 956–959 (1976).

    Article  CAS  Google Scholar 

  31. Scott, K. & Zuker, C. S. Assembly of the Drosophila phototransduction cascade into a signalling complex shapes elementary responses . Nature 395, 805–808 (1998).

    Article  CAS  Google Scholar 

  32. Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G. & Pak, W. L. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J. Biol. Chem. 271, 4937–4945 (1996).

    Article  CAS  Google Scholar 

  33. Meij, J. T. & Ross, E. M. Purification and characterization of phospholipase C-β 1 mutants expressed in E. coli. Biochem. Biophys. Res. Commun. 225, 705– 711 (1996).

    Article  CAS  Google Scholar 

  34. Pak, W. L. in Neurogenetics: Genetic Approaches to the Nervous System (ed. Breakfield,X.) 67–99 (Elsevier North-Holland, New York, 1979).

  35. Hardie, R. C. & Minke, B. The trp gene is essential for a light-activated Ca2+channel in Drosophila photoreceptors . Neuron 8, 643–651 (1992).

    Article  CAS  Google Scholar 

  36. Baylor, D. How photons start vision. Proc. Natl Acad. Sci. USA 93, 560–565 (1996).

    Article  CAS  Google Scholar 

  37. He, W., Cowan, C. W. & Wensel, T. G. RGS 9, a GTPase accelerator for phototransduction . Neuron 20, 95–102 (1998).

    Article  Google Scholar 

  38. Tsang, S. H. et al. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science 282, 117– 121 (1998).

    Article  CAS  Google Scholar 

  39. Hardie, R. C., Peretz, A., Pollock, J.A. & Minke, B. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc. Roy. Soc. Lond. B 252, 223–229 (1993).

    Article  CAS  Google Scholar 

  40. Hardie, R. C. Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels. Proc. Roy. Soc. Lond. B 245, 203 –210 (1991).

    Article  Google Scholar 

  41. Peretz, A., Suss-Toby, E., Rom-Glas, A., Arnon, A., Payne, R. & Minke, B. The light response of Drosophila photoreceptors is accompanied by an increase in cellular calcium: effects of specifics mutations . Neuron 12, 1257–1267 (1994).

    Article  CAS  Google Scholar 

  42. Blumenfeld, A., Erusalimsky, J., Heichal, O., Selinger, Z. & Minke, B. Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proc. Natl Acad. Sci. USA 82 , 7116–7120 (1985).

    Article  CAS  Google Scholar 

  43. Minke, B. & Selinger, Z. in Progress in Retinal Research (eds Osborne,N.A. & Chader,G.J.) 99-124 (Pergamon Press, Oxford, 1991).

  44. Schramm, M. (ed. Martonosi, N. A.) in Membranes and Transport (ed. Martonosi, N. A.) 555–560 (Plenum, New York, 1982).

Download references

Acknowledgements

We thank. R. D. Shortridge for the anti NORPA antibodies, the T 6 mutant and the norpA+ gene and B.-H. Shieh for discussions and for the norpAC1094S mutant, W. L. Pak and C. S. Zuker for the norpA, Gαq 1 and inaD mutants respectively. We also thank H. Cedar, A. Shalom, M. Treinin and M. Danin for critical reading of the manuscript. The work was supported by grants from the NIH, (EY-03529 to B.M. and Z.S.), the US-Israel Binational Science Foundation (B.M., Z.S. and Z.P.), the Israel Science Foundation (to B.M. Z.S. and Z.P.), the Israel Cancer Fund (Z.P.), the German Israeli Foundation (B.M.) and the Minerva Foundation.

Correspondence and requests for materials should be addressed to B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baruch Minke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, B., Bar-Yaacov, M., Cohen Ben-Ami, H. et al. Phospholipase C and termination of G-protein-mediated signalling in vivo. Nat Cell Biol 2, 296–301 (2000). https://doi.org/10.1038/35010571

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing