Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Impacts
  • Published:

From molecular to modular cell biology

Cellular functions, such as signal transmission, are carried out by ‘modules’ made up of many species of interacting molecules. Understanding how modules work has depended on combining phenomenological analysis with molecular studies. General principles that govern the structure and behaviour of modules may be discovered with help from synthetic sciences such as engineering and computer science, from stronger interactions between experiment and theory in cell biology, and from an appreciation of evolutionary constraints.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Stock, J. B. & Surette, M. G. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. & Curtiss, R.) 1103–1129 (ASM Press, Washington, DC, 1996).

    Google Scholar 

  2. Herskowitz, I. Cell 80, 187–197 ( 1995).

    Article  CAS  Google Scholar 

  3. Posas, F., Takekawa, M. & Saito, H. Curr. Opin. Microbiol. 1, 175 –182 (1998).

    Article  CAS  Google Scholar 

  4. Hsu, H. et al. Biophys. J. 65, 1196–1206 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Waxman, D. & Peck, J. R. Science 279, 1210–1213 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Konopka, J. B., Jenness, D. D. & Hartwell, L. H. Cell 54, 609– 620 (1988).

    Article  CAS  Google Scholar 

  7. Goy, M. F., Springer, M. S. & Adler, J. Proc. Natl Acad. Sci. USA 74, 4964–4968 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Barkai, N. & Leibler, S. Nature 387, 913–917 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Anderson, P. W. Science 177, 393–396 ( 1972).

    Article  ADS  CAS  Google Scholar 

  10. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Cell 62, 579–589 ( 1990).

    Article  CAS  Google Scholar 

  11. Gliksman, N. R., Parsons, S. F. & Salmon, E. D. J. Cell Biol. 119, 1271– 1276 (1992).

    Article  CAS  Google Scholar 

  12. Alberts, B. & Miake-Lye, R. Cell 68, 415–420 (1992).

    Article  CAS  Google Scholar 

  13. Shapiro, J. A. Ann. NY Acad. Sci. 870, 23–35 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Hopfield, J. J. J. Theor. Biol. 171, 53–60 (1994).

    Article  Google Scholar 

  15. Bray, D. Nature 376, 307–312 ( 1995).

    Article  ADS  CAS  Google Scholar 

  16. Morgan, D. O. Annu. Rev. Cell. Dev. Biol. 13, 261– 291 (1997).

    Article  CAS  Google Scholar 

  17. Berg, H. C. Cold Spring Harb. Symp. Quant. Biol. 53, 1– 9 (1988).

    Article  CAS  Google Scholar 

  18. Dill, K. A. & Chan, H. S. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  19. Heald, R. et al. Nature 382, 420–425 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Sejnowski, T. J. & Rosenberg, C. R. Complex Systems 1, 145–168 ( 1987).

    Google Scholar 

  21. Jacob, F. Science 196, 1161–1166 ( 1977).

    Article  ADS  CAS  Google Scholar 

  22. Kirschner, M. & Gerhart, J. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Nurse, P. in Limits Of Reductionism In Biology Ciba Foundation Symp. 213 93–101 (1998).

    CAS  Google Scholar 

  24. Strohman, R. C. Nature Biotech. 15, 194–200 (1997).

    Article  CAS  Google Scholar 

  25. Adams, S. R. & Tsien, R. Y. Annu. Rev. Physiol. 55, 755–784 (1993).

    Article  CAS  Google Scholar 

  26. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Science 270, 467–470 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Brown, P. O. & Botstein, D. Nature Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  28. Murray, A. W. & Szostak, J. W. Nature 305, 189–193 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Hodgkin, A. L. & Huxley, A. F. J. Physiol. 117, 500–544 ( 1952).

    Article  CAS  Google Scholar 

  30. Herskowitz, I. & Hagen, D. Annu. Rev. Genet. 14, 399–445 ( 1980).

    Article  CAS  Google Scholar 

  31. Lwoff, A. Bact. Rev. 17, 269 (1953).

    CAS  PubMed  Google Scholar 

  32. Ptashne, M. Nature 214, 232–234 ( 1967).

    Article  ADS  CAS  Google Scholar 

  33. Ptashne, M. et al. Cell 19, 1–11 (1980).

    Article  CAS  Google Scholar 

  34. McAdams, H. H. & Shapiro, L. Science 269, 650–656 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartwell, L., Hopfield, J., Leibler, S. et al. From molecular to modular cell biology. Nature 402 (Suppl 6761), C47–C52 (1999). https://doi.org/10.1038/35011540

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35011540

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing