Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrostatic trapping of ammonia molecules

Abstract

The ability to cool and slow atoms with light for subsequent trapping1,2,3 allows investigations of the properties and interactions of the trapped atoms in unprecedented detail. By contrast, the complex structure of molecules prohibits this type of manipulation, but magnetic trapping of calcium hydride molecules thermalized in ultra-cold buffer gas4 and optical trapping of caesium dimers5 generated from ultra-cold caesium atoms have been reported. However, these methods depend on the target molecules being paramagnetic or able to form through the association of atoms amenable to laser cooling6,7,8, respectively, thus restricting the range of species that can be studied. Here we describe the slowing of an adiabatically cooled beam of deuterated ammonia molecules by time-varying inhomogeneous electric fields9,10 and subsequent loading into an electrostatic trap. We are able to trap state-selected ammonia molecules with a density of 106 cm-3 in a volume of 0.25 cm3 at temperatures below 0.35 K. We observe pronounced density oscillations caused by the rapid switching of the electric fields during loading of the trap. Our findings illustrate that polar molecules can be efficiently cooled and trapped, thus providing an opportunity to study collisions and collective quantum effects in a wide range of ultra-cold molecular systems11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Configuration of the trap with the voltages as applied during loading and trapping.
Figure 3: Density of ammonia molecules at the centre of the trap as a function of time.

Similar content being viewed by others

References

  1. Chu, S. Manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Cohen-Tannoudji, C. N. Manipulating atoms with photons. Rev. Mod. Phys. 70 , 707–719 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Weinstein, J. D., de Carvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperatures. Nature 395, 148–150 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Takekoshi, T., Patterson, B. M. & Knize, R. J. Observation of optically trapped cold cesium molecules. Phys. Rev. Lett. 81, 5105– 5108 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Band, Y. B. & Julienne, P. S. Ultracold-molecule production by laser-cooled atom photoassociation. Phys. Rev. A 51, R4317–R4320 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Fioretti, A. et al. Formation of cold Cs2 molecules through photoassociation. Phys. Rev. Lett. 80, 4402– 4405 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Nikolov, A. N. et al. Observation of ultracold ground-state potassium molecules. Phys. Rev. Lett. 82, 703– 706 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Bethlem, H. L., Berden, G., van Roij, A. J. A., Crompvoets, F. M. H. & Meijer, G. Trapping neutral molecules in traveling potential well. Phys. Rev. Lett. 84, 5744–5747 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Doyle, J. M. & Friedrich, B. Molecules are cool. Nature 401, 749–751 ( 1999).

    Article  ADS  CAS  Google Scholar 

  12. Williams, C. J. & Julienne, P. S. Molecules at rest. Science 287, 986– 987 (2000).

    Article  CAS  Google Scholar 

  13. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016– 1019 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Herschbach, D. Molecular clouds, clusters, and corrals. Rev. Mod. Phys. 71, S411–S418 (1999).

    Article  CAS  Google Scholar 

  15. Maddi, J. A., Dinneen, T. P. & Gould, H. Slowing and cooling molecules and neutral atoms by time-varying electric-field gradients. Phys. Rev. A 60, 3882–3891 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Gupta, M. & Herschbach, D. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A 103 , 10670–10673 (1999).

    Article  CAS  Google Scholar 

  17. Friedrich, B. Slowing of supersonically cooled atoms and molecules by time-varying nonresonant induced dipole forces. Phys. Rev. A 61, 025403-1/4 (2000).

    Article  ADS  Google Scholar 

  18. Friedrich, B. et al. Towards magnetic trapping of molecules. J. Chem. Soc. Faraday Trans. 94, 1783–1791 (1998).

    Article  CAS  Google Scholar 

  19. Wing, W. H. Electrostatic trapping of neutral atomic particles. Phys. Rev. Lett. 45, 631–634 ( 1980).

    Article  ADS  CAS  Google Scholar 

  20. Gandhi, S. R. & Bernstein, R. B. Focusing and state selection of NH3 and OCS by the electrostatic hexapole via first- and second-order Stark effects. J. Chem. Phys. 87, 6457– 6467 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Ashfold, M. N. R., Dixon, R. N., Little, N., Stickland, R. J. & Western, C. M. The B1E″ state of ammonia: sub-Doppler spectroscopy at vacuum ultraviolet energies. J. Chem. Phys. 89, 1754–1761 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Bahns, J. T., Gould, P. L. & Stwalley, W. C. Formation of cold (T ≤ 1 K) molecules. Adv. At. Mol. Opt. Phys. 42, 171–224 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’. The research of R.T.J. has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences. We acknowledge the technical assistance of Ch. Timmer.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethlem, H., Berden, G., Crompvoets, F. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491–494 (2000). https://doi.org/10.1038/35020030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing