Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electronics using hybrid-molecular and mono-molecular devices

Abstract

The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules—a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics—rectification, amplification and storage—was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecules described in the text.
Figure 2: The first two active three-terminal devices in molecular electronics.
Figure 3: Regimes of electronic transport as a function of the wire width δ and length L. λF is the de Broglie carrier wavelength in the contact electrodes (away from the constriction), λe the elastic mean free path in the wire and λinel the inelastic mean free path in the wire.
Figure 4: Representative example design of a hybrid molecular electronic device.
Figure 6: Illustration of the superposition rule operating in a pure tunnelling regime for a simple intramolecular circuit.
Figure 5: Variation of the inter-electrode distance of planar nanojunctions and the length of the synthesized molecular wires as a function of time.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    ADS  CAS  Google Scholar 

  2. Riordan, M. & Hoddeson, L. Crystal Fire: The Birth of the Computer Age (W. W. Norton & Company, New York, 1997).

    Google Scholar 

  3. Taube, H. The electron transfer between metal complexes: a retrospective. Science 226, 1028–1036 ( 1984).

    ADS  CAS  PubMed  Google Scholar 

  4. Patoux, C. et al. Long-range electronic coupling in bis(cyclometalated) ruthenium complexes. J. Am. Chem. Soc. 120, 3717– 3725 (1998).

    CAS  Google Scholar 

  5. Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 60–63 ( 1998).

    ADS  CAS  Google Scholar 

  6. Fraysse, S., Coudret, C. & Launay, J.-P. Synthesis and properties of dinuclear complexes with a photochromic bridge: switching ”ON” and ”OFF” an intervalence electron transfer. Eur. J. Inorg. Chem. 1581–1590 (2000).

  7. Patoux, C., Coudret, C., Launay, J.-P., Joachim, C. & Gourdon, A. Topological effects on intramolecular electron transfer via quantum interference. Inorg. Chem. 36, 5037–5049 (1997).

    CAS  Google Scholar 

  8. Delamarche, E., Michel, B., Biebuyck, H. A. & Gerber, C. Golden interfaces: the surface of self-assembled monolayers. Adv. Mater. 8, 719–729 ( 1996).

    CAS  Google Scholar 

  9. Mann, B. & Kuhn, H. Tunnelling through fatty acid salt monolayers. J. Appl. Phys. 42, 4398– 4405 (1971).

    ADS  CAS  Google Scholar 

  10. Geddes, N. J., Sambles, J. R., Davis, D. J., Parker, W. G. & Sandman, D. J. Fabrication and investigation of asymmetric current-voltage characteristics of a metal/Langmuir-Blodgett monolayer/metal structure. Appl. Phys. Lett. 56, 1916–1918 (1990).

    ADS  CAS  Google Scholar 

  11. Metzger, R. M. et al. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455–10466 (1997).

    CAS  Google Scholar 

  12. Gimzewski, J. K., Stoll, E. P. & Schlittler, R. R. Scanning tunnelling microscopy on individual molecules of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf. Sci. 181, 267–277 (1987).

    ADS  CAS  Google Scholar 

  13. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realised with the scanning tunnelling microscope. Nature 352, 600– 603 (1991).

    ADS  CAS  Google Scholar 

  14. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    ADS  CAS  PubMed  Google Scholar 

  15. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    ADS  CAS  Google Scholar 

  16. Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P. & Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 52, 9071–9077 (1995).

    ADS  CAS  Google Scholar 

  17. Reed, M. A. et al. The electrical measurement of molecular junctions. Ann. NY Acad. Sci. 852, 133–144 (1998).

    ADS  CAS  Google Scholar 

  18. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 ( 1997).

    CAS  Google Scholar 

  19. Kerguelis, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505– 12513 (1999).

    ADS  Google Scholar 

  20. Bezryadin, A., Dekker, C. & Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997).

    ADS  CAS  Google Scholar 

  21. Rousset, V., Joachim C., Rousset, B. & Fabre, N. Fabrication of co-planar metal-insulator-metal nanojunction with a gap lower than 10 nm. J. Phys. III 5, 1983–1989 (1995).

    CAS  Google Scholar 

  22. Di Fabrizio, E. et al. Fabrication of 5 nm resolution electrodes for molecular devices by means of electron beam lithography. Jpn. J. Appl. Phys. 36, L70–L72 ( 1997).

    CAS  Google Scholar 

  23. Yanson, A. I., Yanson, I. K. & van Ruitenbeek, J. M. Observation of shell structure in sodium nanowires. Nature 400, 144–146 (1999).

    ADS  CAS  Google Scholar 

  24. Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 ( 2000).

    ADS  CAS  PubMed  Google Scholar 

  25. Tans, S. J. et al. Individual single wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    ADS  CAS  Google Scholar 

  26. Ebbesen, T. W. et al. Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 ( 1996).

    ADS  CAS  Google Scholar 

  27. Cholet, S., Joachim, C., Martinez, J. P. & Rousset, B. Fabrication of co-planar metal-insulator-metal nanojunction down to 5 nm. Eur. Phys. J. Appl. Phys. 8, 139– 145 (1999).

    ADS  CAS  Google Scholar 

  28. Bachtold, A. et al. Contacting carbon nanotubes selectively with low Ohmic contact for four-probe electric measurement. Appl. Phys. Lett. 73, 274–276 (1998).

    ADS  CAS  Google Scholar 

  29. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    ADS  CAS  Google Scholar 

  30. Avouris, Ph. et al. in Proceedings of “Nanotube 1999” (Plenum, New York, in the press).

  31. Mujica, V., Kemp, M., Roitberg, A. & Ratner, M. A. Current-voltage characteristics of molecular wires: eigenvalue staircase, Coulomb blockade and rectification. J. Chem. Phys. 104, 7296 –7305 (1996).

    ADS  CAS  Google Scholar 

  32. Porath, D. & Milo, O. Single electron tunnelling and level spectroscopy of isolated C60 molecules. J. Appl. Phys. 81, 2241–2244 ( 1997).

    ADS  CAS  Google Scholar 

  33. Magoga, M. & Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 56, 4722 –4729 (1997).

    ADS  CAS  Google Scholar 

  34. Samanta, M. P., Tian, W., Datta, S., Henderson, J. I. & Kubiak, C. P. Electronic conduction through organic molecules. Phys. Rev. B 53, R7626– R7629 (1996).

    ADS  CAS  Google Scholar 

  35. Olson, M. et al. A conformation study of the influence of vibration conduction in molecular wires. Phys. Chem. B 102, 941 –947 (1998).

    CAS  Google Scholar 

  36. Yaliraki, S. N., Kemp, M. & Ratner, M. A. Conductance of molecular wires: influence of molecule-electrode binding. J. Am. Chem. Soc. 121, 3428– 3434 (1999).

    CAS  Google Scholar 

  37. Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular devices. Phys. Rev. Lett. 84, 979–982 (2000).

    ADS  CAS  PubMed  Google Scholar 

  38. Joachim, C. & Vinuesa, J. Length dependence of the transparence (conductance) of a molecular wire. Europhys. Lett. 33, 635–640 (1996).

    ADS  CAS  Google Scholar 

  39. Lang, N. D. & Avouris, Ph. Oscillatory conductance of carbon-atom wires. Phys. Rev. Lett. 81, 3515– 3518 (1998).

    ADS  CAS  Google Scholar 

  40. Magoga, M. & Joachim, C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, 16011–16020 (1999).

    ADS  CAS  Google Scholar 

  41. Lang, N. D. Resistance of atomic wires. Phys. Rev. B 52, 5335–5342 (1995).

    ADS  CAS  Google Scholar 

  42. Ness, H. & Fisher, A. J. Non-perturbative evaluation of STM tunneling probabilities from ab-initio calculations. Phys. Rev.B 56, 12462–12481 ( 1997).

    ADS  Google Scholar 

  43. Collins, P. G., Zetti, A., Bando, H., Thess, A. & Smalley, R. E. Nanotube nanodevices. Science 278, 100–103 (1997).

    CAS  Google Scholar 

  44. Hu, J. T., Min, O. Y., Yang, P. D. & Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48– 51 (1999).

    ADS  CAS  Google Scholar 

  45. Yao, Z., Postman, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402 , 273–276 (1999).

    ADS  CAS  Google Scholar 

  46. Léonard, F. & Tersoff, J. Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999).

    ADS  Google Scholar 

  47. Fischer, C. M., Burghard, M., Roth, S. & von Klitzing, K. Organic quantum wells: molecular rectification and single electron tunnelling. Europhys. Lett. 28, 129–134 (1994).

    ADS  CAS  Google Scholar 

  48. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    ADS  CAS  Google Scholar 

  49. Manoharan, H. G., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512– 515 (2000).

    ADS  CAS  PubMed  Google Scholar 

  50. Sangregorio, S., Ohm, T., Paulsen, C., Sessoli, R. & Gatteschi, D. Quantum tunnelling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645– 4648 (1997).

    ADS  CAS  Google Scholar 

  51. Kahn, O. & Launay, J. P. Molecular bistability: An overview. Chemtronics 3, 140–151 (1988).

    Google Scholar 

  52. Mathews, R. H. et al. A new RTD-FET logic family. Proc. IEEE 87, 596–605 (1999).

    Google Scholar 

  53. Gao, H. J. et al. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 84, 1780 –1783 (2000).

    ADS  CAS  PubMed  Google Scholar 

  54. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550– 1552 (1999).

    CAS  PubMed  Google Scholar 

  55. Carter, F. L. The molecular device computer: point of departure for large scale cellular automata. Physica D 10, 175– 194 (1984).

    ADS  MathSciNet  Google Scholar 

  56. Higelin, D. & Sixl, H. Spectroscopystudies of the photochromism of N-salicylideneaniline mixed crystals and glasses. Chem. Phys. 77, 391–396 ( 1983).

    CAS  Google Scholar 

  57. Joachim, C. & Launay, J. P. Bloch effective Hamiltonian for the possibility of molecular switching in the ruthenium-bipyridylbutadiene-ruthenuim system. Chem. Phys. 109, 93– 99 (1986).

    CAS  Google Scholar 

  58. Hush, N. S., Wong, A. T., Bacskay, G. B. & Riemers, J. R. Electron and energy transfer through bridged systems: VI. molecular switches. J. Am. Chem. Soc. 112, 4192– 4197 (1990).

    CAS  Google Scholar 

  59. Gilat, S. L., Kawai, H. S. & Lehn, J. M. Light-triggered electrical and optical switching devices. J. Chem. Soc. Chem. Commun. 1439– 1442 (1993).

  60. Bissel, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 ( 1994).

    ADS  Google Scholar 

  61. Girard, C., Dereux, A. & Joachim, C. Photonic transfer through subwavelength optical waveguide. Europhys. Lett. 44, 686– 692 (1998).

    ADS  CAS  Google Scholar 

  62. Goldhaber-Gordon, D., Montemerlo, M. S., Love, J. C., Opiteck, G. J. & Ellenbogen, J. C. Overview of nanoelectronic devices. Proc. IEEE 85, 521– 539 (1997).

    CAS  Google Scholar 

  63. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49– 52 (1998).

    ADS  CAS  Google Scholar 

  64. Joachim, C., Gimzewski, J. K. & Tang, H. Physical principles of the single C60 transistor effect. Phys. Rev. B 58, 16407– 16417 (1998).

    ADS  CAS  Google Scholar 

  65. Brugger, J., Beljakovic, G., Despont, M., de Rooij, N. F. & Vettiger, P. Silicon micro/nanomechanical device fabrication based on focused ion beam surface modification and KOH etching. J. Microelec. Eng. 35, 401– 404 (1997).

    CAS  Google Scholar 

  66. Aviram, A. Molecules for memory, logic and amplification. J. Am. Chem. Soc. 110, 5687–5692 ( 1988).

    CAS  Google Scholar 

  67. Tour, J. M., Rulian, W. & Schumm, J. S. Extended orthogonally fused conducting oligomers for molecular electronic devices. J. Am. Chem. Soc. 113, 7064–7066 (1991).

    CAS  Google Scholar 

  68. Diers, J. R. et al. ESR characterisation of oligomeric thiophene materials. Chem. Mater. 6, 327–332 (1994).

    CAS  Google Scholar 

  69. Treboux, G., Lapstun, P. & Silverbrook, K. Conductance in nanotube Y-junctions. Chem. Phys. Lett. 306, 402–406 (1999).

    ADS  CAS  Google Scholar 

  70. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 ( 1999).

    CAS  PubMed  Google Scholar 

  71. Compano, R., Molenkamp, L. & Paul, D. J. (eds) Technology Roadmap for European Nanoelectronics (European Commission, IST Program, Brussels, 1999).

    Google Scholar 

  72. Nakamura, Y., Pashkin, Yu. A. & Tsai, T. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).

    ADS  CAS  Google Scholar 

  73. Landauer, R. Can we switch by control of quantum mechanical transmission? Phys. Today 119–121 (1989).

  74. Keyes, R. W. Lighting up logic. Nature 362, 289– 290 (1993).

    ADS  PubMed  Google Scholar 

  75. Washburn, S., Schmid, H., Kern, D. & Webb, R. A. Normal-metal Aharonov-Bohm effect in the presence of a transverse electric field. Phys. Rev. Lett. 59, 1791–1794 ( 1987).

    ADS  CAS  PubMed  Google Scholar 

  76. Langlais, V. et al. Spatially resolved tunnelling along a molecular wire. Phys. Rev. Lett. 83, 2809–2812 (1999).

    ADS  CAS  Google Scholar 

  77. Simmons, J. G. Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    ADS  Google Scholar 

  78. Lewickit, G. & Mead, C. A. Experimental determination of the E-k relationship in electron tunnelling. Phys. Rev. Lett. 16, 939–941 (1966).

    ADS  Google Scholar 

  79. Magoga, M. & Joachim, C. Minimal attenuation for tunnelling through a molecular wire. Phys. Rev. B 57, 1820–1823 (1998).

    ADS  CAS  Google Scholar 

  80. Tour, J. M., Kozaki M. & Seminario, J. M. Molecular scale electronics: a synthetic/computational approach to digital computing. J. Am. Chem. Soc. 120, 8486– 8493 (1998).

    CAS  Google Scholar 

  81. Sugiura, K. I., Tanaka, H., Matsumoto, T., Kawai, T. & Sakata, Y. A mandala-patterned bandanna-shaped porphyrin oligomer, C1244H1350N84Ni 20O88, having a unique size and geometry. Chem. Lett. 1193–1194 (1999).

  82. Wada, Y. Atom electronics: a proposal of atom/molecule switching devices. Ann. NY Acad. Sci. 852, 257–276 (1998).

    ADS  CAS  Google Scholar 

  83. Menon, M. & Srivastava, D. Carbon nanotube “T-junctions”: nanoscale metal-semiconductor-metal contact devices. Phys. Rev. Lett. 79, 4453–4456 ( 1997).

    ADS  CAS  Google Scholar 

  84. Stipe, B. C., Rezaei, M. A. & Ho, W. Inducing and viewing the rotation motion of a single molecule. Science 279, 1907–1909 (1998).

    ADS  CAS  PubMed  Google Scholar 

  85. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

    ADS  CAS  Google Scholar 

  86. Guo, L., Krauss, P. R. & Chou, S. Y. Nanoscale silicon field effect transistors fabricated using imprint lithography. Appl. Phys. Lett. 71, 1881–1883 (1997).

    ADS  CAS  Google Scholar 

  87. Lüthi, R. et al. Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Appl. Phys. Lett. 75, 1314–1316 (1999).

    ADS  Google Scholar 

  88. Kratschmer, E. et al. An electron-beam microcolumn with improved resolution beam current and stability. J. Vac. Sci. Technol. B 13, 2498–2503 (1995).

    CAS  Google Scholar 

  89. Lefebvre, J., Lynch, J. F., Llaguno, M., Radosavljevic, M. & Johnson, A. T. Single-wall carbon nanotube circuits assembled with an atomic force microscope. Appl. Phys. Lett. 75, 3014–3016 (1999).

    ADS  CAS  Google Scholar 

  90. Allara, D. L. et al. Evolution of strategies for self-assembly and hook up of molecule-based devices. Ann. NY Acad. Sci. 852, 349– 370 (1998).

    ADS  CAS  Google Scholar 

  91. Gerdes, S., Ondarcuhu, T., Cholet, S. & Joachim, C. Combing a carbon nanotube on a flat metal-insulator-metal nanojunction. Europhys. Lett. 48, 292–298 (1999).

    ADS  CAS  Google Scholar 

  92. M. Handschuh, M., Nettesheim, S. & Zenobi, R. Appl. Surf. Sci. 137, 125– 135 (1999).

    ADS  Google Scholar 

  93. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn Engl. 35, 1154–1196 (1996).

    Google Scholar 

  94. Drain, C. M. & Lehn, J. M. Self-assembly of square multiporphyrin arrays by metal ion coordination. J. Chem. Soc. Chem. Commun. 2313–2315 (1994).

  95. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283 , 1683–1688 (1999).

    ADS  CAS  PubMed  Google Scholar 

  96. Yazdani, A., Eigler, D. M. & Lang, N. D. Off-resonance conduction through atomic wires. Science 272, 1912–1924 ( 1996).

    ADS  Google Scholar 

  97. Fischer, P. B. & Chou, S. Y. 10 nm electron beam lithography and sub-50 nm overlay using a modified scanning electron microscope. Appl. Phys. Lett. 62, 2989– 2991 (1993).

    ADS  CAS  Google Scholar 

  98. Bezryadin, A. & Dekker, C. Nanofabrication of electrodes with sub-5nm spacing for transport experiments on single molecules and metal clusters. J. Vac. Sci. Technol. A 15, 793– 799 (1997).

    CAS  Google Scholar 

  99. Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separations. Appl. Phys. Lett. 74, 2084–2086 (1999).

    ADS  CAS  Google Scholar 

  100. Dietz, T. M., Stallman, B. J., Kwan, W. S. V., Penneau, J. F. & Miller, L. L. Soluble oligoimide molecular lines which have persistent poly(anion radicals) and poly(dianions). J. Chem. Soc. Chem. Commun. 367–369 (1990).

  101. Kwan, W. S. V., Atanasoska, L. & Miller, L. L. Oligoimide monolayers covalently attached to gold. Langmuir 7, 1419–1425 (1991).

    CAS  Google Scholar 

  102. Schumm, J. S., Pearson, D. L. & Tour, J. M. Iterative divergent/convergent doubling approach to linear conjugated oligomers. A rapid route potential molecular wire. Macromolecules 27, 2348–2350 (1994).

    ADS  Google Scholar 

  103. Schumm, J. S., Pearson, D. L. & Tour, J. M. Iterative divergent/convergent doubling approach to linear conjugated oligomers. A rapid route to a 128 Å long potential molecular wire. Angew. Chem. Int. Edn Engl. 33, 1360–1363 (1994).

    Google Scholar 

  104. Huang, S. & Tour, J. M. Rapid solid-phase synthesis of conjugated homo-oligomers and (AB) alternating block co-oligomers of precise length and constitution. J. Org. Chem. 64, 8898– 8906 (1999).

    CAS  PubMed  Google Scholar 

  105. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 63, 2002– 2004 (1993).

    ADS  CAS  Google Scholar 

  106. Kumar, A., Biebuyck, H. A. & Whitesides, G. M. Patterning SAMs: Applications in materials science. Langmuir 10, 1498–1511 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the CEMES Molecular Electronics group and IBM Zurich's Science and Technology department for helpful discussions. This work has partially been supported through the European Union and the Swiss Federal Office for Education and Science by the Information Society Technologies–Future Emerging Technology (IST–FET) project Bottom Up Nanomachines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Joachim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joachim, C., Gimzewski, J. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000). https://doi.org/10.1038/35046000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing