Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic binding of histone H1 to chromatin in living cells

Abstract

The linker histone H1 is believed to be involved in chromatin organization by stabilizing higher-order chromatin structure1,2,3. Histone H1 is generally viewed as a repressor of transcription as it prevents the access of transcription factors and chromatin remodelling complexes to DNA4,5,6. Determining the binding properties of histone H1 to chromatin in vivo is central to understanding how it exerts these functions. We have used photobleaching techniques to measure the dynamic binding of histone H1–GFP to unperturbed chromatin in living cells. Here we show that almost the entire population of H1–GFP is bound to chromatin at any one time; however, H1–GFP is exchanged continuously between chromatin regions. The residence time of H1–GFP on chromatin between exchange events is several minutes in both euchromatin and heterochromatin. In addition to the mobile fraction, we detected a kinetically distinct, less mobile fraction. After hyperacetylation of core histones, the residence time of H1–GFP is reduced, suggesting a higher rate of exchange upon chromatin remodelling. These results support a model in which linker histones bind dynamically to chromatin in a stop-and-go mode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of H1–GFP proteins.
Figure 2: FRAP analysis of H1–GFP.
Figure 3: FRAP on H1–GFP in heterochromatin or euchromatin.
Figure 4: FRAP on H1–GFP in heterochromatin or euchromatin after TSA treatment.

Similar content being viewed by others

References

  1. Thoma, F. & Koller, T. Influence of histone H1 on chromatin structure. Cell 12, 101– 107 (1977).

    Article  CAS  Google Scholar 

  2. Ramakrishnan, V. Histone H1 and chromatin higher order structure. Crit. Rev. Eukaryot. Gene Expr. 7, 215–230 ( 1997).

    Article  CAS  Google Scholar 

  3. Thomas, J. O. Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317 (1999).

    Article  CAS  Google Scholar 

  4. Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshak, D. R. & Kadonaga, J. T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251, 643–649 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Zlatanova, J. & van Holde, K. Linker histones versus HMG1/2: a struggle for dominance? BioEssays 20, 588–588 (1998).

    Article  Google Scholar 

  6. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Gunjan, A., Alexander, B. T., Sittman, D. B. & Brown, D. T. Effects of H1 histone variant overexpression on chromatin structure. J. Biol. Chem. 274, 37950–37956 (1999).

    Article  CAS  Google Scholar 

  8. Gunjan, A. & Brown, D. T. Overproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter. Nucleic Acids Res. 27, 3355– 3363 (1999).

    Article  CAS  Google Scholar 

  9. Minc, E., Allory, Y., Worman, H. J., Courvalin, J.-C. & Buenida, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 ( 1999).

    Article  CAS  Google Scholar 

  10. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930– 939 (1997).

    Article  CAS  Google Scholar 

  11. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604– 609 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Struhl, K. Histoneacetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).

    Article  CAS  Google Scholar 

  14. Ura, K., Wolffe, A. P. & Hayers, J. J. Core histone acetylation does not block linker histone binding to a nucleosome including a Xenopus borealis 5S rRNA gene. J. Biol. Chem. 269, 27171–27174 (1994).

    CAS  PubMed  Google Scholar 

  15. Krajewski, W. A. & Becker, P. B. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc. Natl Acad. Sci. 95, 1540–1545 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Ridsdale, J. A., Hendzel, M. J., Delcuve, G. P. & Davie, J. R. Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J. Biol. Chem. 265, 5150–5156 (1990).

    CAS  PubMed  Google Scholar 

  17. Juan, L.-J., Utley, R. T., Adams, C. C., Vettese-Dadey, M. & Workman, J. L. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J. 13, 6031–6040 (1994).

    Article  CAS  Google Scholar 

  18. Bates, D. L., Butler, P. J., Pearson, E. C. & Thomas, J. O. Stability of the higher order structure of chicken erythrocyte chromatin in solution. Eur. J. Biochem. 119, 469– 476 (1981).

    Article  CAS  Google Scholar 

  19. Caron, F. & Thomas, J. O. Exchange of histone H1 between chromatin segments. J. Mol. Biol. 146, 513 –537 (1981).

    Article  CAS  Google Scholar 

  20. Louters, L. & Chalkley, R. Exchange of histones H1, H2A, and H2B in vivo. Biochemistry 24, 3080– 3085 (1985).

    Article  CAS  Google Scholar 

  21. Wu, L. H., Kuehl, L. & Rechsteiner, M. Dynamic behavior of histone H1 microinjected into HeLa cells. J. Cell Biol. 103, 565– 574 (1986).

    Article  Google Scholar 

  22. Lu, M. J., Mpoke, S. S., Dadd, C. A. & Allis, C. D. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei. Mol. Biol. Cell 6, 1077–1087 (1995).

    Article  CAS  Google Scholar 

  23. Dou, Y., Mizzen, C. A., Abrams, M., Allis, C. D. & Gorovsky, M. A. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 4, 641–647 ( 1999).

    Article  CAS  Google Scholar 

  24. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).

    Article  ADS  CAS  Google Scholar 

  25. Berger, S. L. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11, 336–341 (1999).

    Article  CAS  Google Scholar 

  26. Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395– 1402 (1988).

    Article  CAS  Google Scholar 

  27. Bresnick, E. H., Bustin, M., Marsaud, V., Richard-Foy, H. & Hager, G. L. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20, 273 –278 (1992).

    Article  CAS  Google Scholar 

  28. Brown, D. T., Alexander, B. T. & Sittman, D. B. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Res. 24, 486–493 ( 1996).

    Article  CAS  Google Scholar 

  29. Misteli, T. & Spector, D. L. Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. Mol. Biol. Cell 7, 1559–1572 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Sittman for valuable discussion, S. Leuba for critical comments on the manuscript and E. Minc for providing HP1 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Misteli.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misteli, T., Gunjan, A., Hock, R. et al. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000). https://doi.org/10.1038/35048610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing