Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices

Abstract

Nanowires and nanotubes carry charge and excitons efficiently, and are therefore potentially ideal building blocks for nanoscale electronics and optoelectronics1,2. Carbon nanotubes have already been exploited in devices such as field-effect3,4 and single-electron5,6 transistors, but the practical utility of nanotube components for building electronic circuits is limited, as it is not yet possible to selectively grow semiconducting or metallic nanotubes7,8. Here we report the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping. Gate-voltage-dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires function as nanoscale field-effect transistors, and can be assembled into crossed-wire p–n junctions that exhibit rectifying behaviour. Significantly, the p–n junctions emit light strongly and are perhaps the smallest light-emitting diodes that have yet been made. Finally, we show that electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doping and electrical transport of InP nanowires.
Figure 2: Crossed nanowire junctions and electrical properties.
Figure 3: Optoelectrical characterization of nanowire p–n junctions.
Figure 4: Parallel and orthogonal assembly of nanowires with electric fields.

Similar content being viewed by others

References

  1. Hu, J., Odom, T. W. & Lieber, C. M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

    Article  CAS  Google Scholar 

  2. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Tans, S. J., Verschueren, R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49– 52 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field effect transistors. Appl. Phys. Lett. 73, 2447– 2449 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Bockrath, M. et al. Single electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 ( 1997).

    Article  CAS  Google Scholar 

  7. Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 ( 1998).

    Article  ADS  CAS  Google Scholar 

  8. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 –62 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  11. Cui, Y., Duan, X., Hu, J. & Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104 , 5213–5216 (2000).

    Article  CAS  Google Scholar 

  12. Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  13. Alivisatos, A. P. Semiconductor clusters, nanocrystal, and quantum dots. Science 271, 933–937 ( 1996).

    Article  ADS  CAS  Google Scholar 

  14. Bolm, G. M. & Woodall, J. M. Efficient electroluminescence from InP diodes grown by liquid-phase epitaxy. Appl. Phys. Lett. 17, 373–376 ( 1970).

    Article  ADS  Google Scholar 

  15. Bessolov, V. N. & Lebedev, M. V. Chalcogenide passivation of III-V semiconductor surfaces. Semiconductors 32, 1141–1156 (1998).

    Article  ADS  Google Scholar 

  16. Micic, O. I., Sprague, J., Lu, Z. & Nozik, A. J. Highly efficient band edge emission from InP quantum dots. Appl. Phys. Lett. 68, 3150–3152 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Smith, P. A. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Xia, Y. N., Rogers, J. A., Paul K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 ( 1999).

    Article  CAS  Google Scholar 

  19. Duan, X. & Lieber, C. M. Laser assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188–189 (2000).

    Article  CAS  Google Scholar 

  20. Duan, X., Wang, J. & Lieber, C. M. Synthesis and optical properties of GaAs nanowires. Appl. Phys. Lett. 76, 1116– 1168 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Park, M.S. Gudiksen, J.-L. Huang, K. Kim, T. Oosterkamp & S.-I. Yang for discussions. This work was supported by the US Office of Naval Research, Defense Advanced Projects Research Agency, and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Huang, Y., Cui, Y. et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001). https://doi.org/10.1038/35051047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051047

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing