Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

Abstract

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Rab-GTPases, together with their cofactors, mediate the attachment step in the membrane fusion of vesicles. But how bilayer mixing—the subsequent core process of fusion—is catalysed remains unclear. Ca2+/calmodulin controls this terminal process in many intracellular fusion events. Here we identify V0, the membrane-integral sector of the vacuolar H+-ATPase, as a target of calmodulin on yeast vacuoles. Between docking and bilayer fusion, V0 sectors from opposing membranes form complexes. V0 trans-complex formation occurs downstream from trans-SNARE pairing, and depends on both the Rab-GTPase Ypt7 and calmodulin. The maintenance of existing complexes and completion of fusion are independent of trans-SNARE pairs. Reconstituted proteolipids form sealed channels, which can expand to form aqueous pores in a Ca2+/calmodulin-dependent fashion. V0 trans-complexes may therefore form a continuous, proteolipid-lined channel at the fusion site. We propose that radial expansion of such a protein pore may be a mechanism for intracellular membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Label transfer from iodinated calmodulin to vacuolar membrane proteins.
Figure 2: Two-dimensional separation of proteins labelled by SASD–calmodulin.
Figure 3: Calmodulin–proteolipid interaction.
Figure 4: V-ATPase pump activity is not directly required for vacuole fusion.
Figure 5: Complex formation of V0 sectors.
Figure 6: Trans-SNARE pairing and V0 trans-complexes.

Similar content being viewed by others

References

  1. Jahn, R. & Südhof, T. C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911. (1999).

    Article  CAS  Google Scholar 

  2. Pfeffer, S. R. Transport vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, 17–19 (1999)

    Article  Google Scholar 

  3. Mayer, A. Membrane fusion: SNAREs only? Curr. Opin. Cell Biol. 11, 447–452 (1999).

    Article  CAS  Google Scholar 

  4. Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol. 7, 509–517 (1995).

    Article  CAS  Google Scholar 

  5. Chernomordik, L. V. & Zimmerberg, J. Bending membranes to the task: structural intermediates in bilayer fusion. Curr. Opin. Struct. Biol. 5, 541–547 (1995).

    Article  CAS  Google Scholar 

  6. Hanson, P. I. et al. Structure & conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    CAS  Google Scholar 

  7. Skehel, J. J. & Wiley, D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

    Article  CAS  Google Scholar 

  8. Weber, T. et al. SNAREpins: Minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  Google Scholar 

  9. Otter-Nilsson, M. et al. Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J. 18, 2074–2083 (1999).

    Article  CAS  Google Scholar 

  10. Brügger, B. et al. Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors. EMBO J. 19, 1272–1278 (2000).

    Article  Google Scholar 

  11. Coorssen, J. R., Blank, P. S., Tahara, M. & Zimmerberg, J. Biochemical and functional studies of cortical vesicle fusion: The SNARE complex and Ca2+ sensitivity. J. Cell Biol. 143, 1845–1857 (1998).

    Article  CAS  Google Scholar 

  12. Chen, Y. A. et al. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  13. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

    Article  CAS  Google Scholar 

  14. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Ungermann, C., Wickner, W. & Xu, Z. Y. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc. Natl Acad. Sci. USA 96, 11194–11199 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Peters, C. & Mayer, A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575–580 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Peters, C. et al. Control of the terminal step of membrane fusion by protein phosphatase 1. Science 285, 1084–1087 (1999).

    Article  CAS  Google Scholar 

  18. Pryor, P. R. et al. The role of intraorganellar Ca2+ in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J. Cell Biol. 149, 1053–1062 (2000).

    Article  CAS  Google Scholar 

  19. Colombo, M. I., Beron, W. & Stahl, P. D. Calmodulin regulates endosome fusion. J. Biol. Chem. 272, 7707–7712 (1997).

    Article  CAS  Google Scholar 

  20. Holroyd, C., Kistner, U., Annaert, W. & Jahn, R. Fusion of endosomes involved in synaptic vesicle recycling. Mol. Biol. Cell 10, 3035–3044 (1999).

    Article  CAS  Google Scholar 

  21. Porat, A. & Elazar, Z. Regulation of intra-Golgi membrane transport by calcium. J. Biol. Chem. 275, 29233–29237 (2000).

    Article  CAS  Google Scholar 

  22. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalysed by the ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    Article  CAS  Google Scholar 

  23. Ungermann, C., Nichols, B. J., Pelham, H. R. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    Article  CAS  Google Scholar 

  24. Hartinger, J., Stenius, K., Högemann, D. & Jahn, R. 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem. 240, 126–133 (1996).

    Article  CAS  Google Scholar 

  25. Cohen, A., Perzov, N., Nelson, H. & Nelson, N. A novel family of yeast chaperons involved in the distribution of V-ATPase and other membrane proteins. J. Biol. Chem. 274, 26885–26893 (1999).

    Article  CAS  Google Scholar 

  26. Stevens, T. H. & Forgac, M. Structure, function and regulation of the vacuolar ATPase. Annu. Rev. Cell Dev. Biol. 13, 779–808 (1997).

    Article  CAS  Google Scholar 

  27. Kane, P. M. & Parra, K. Assembly and regulation of the yeast vacuolar H+-ATPase. J. Exp. Biol. 203, 81–87 (2000).

    CAS  PubMed  Google Scholar 

  28. Dunant, Y. & Israël, M. In vitro reconstitution of neurotransmitter release. Neurochem. Res. 23, 709–718 (1998).

    Article  CAS  Google Scholar 

  29. Israël, M., Morel, N. & Lesbats, B. Evidence for an association of the 15-kDa proteolipid of mediatophore with a 14-kDa polypeptide. J. Neurochem. 57, 2047–2053 (1991).

    Article  Google Scholar 

  30. Israël, M., Meunier, F. M., Morel, N. & Lesbats, B. Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equipped with mediatophore, a presynaptic membrane protein. J. Neurochem. 49, 975–982 (1987).

    Article  Google Scholar 

  31. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF) driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  32. Finbow, M. E. & Harrison, M. A. The vacuolar ATPase: a universal proton pump of eukaryotes. Biochem. J. 324, 697–712 (1997).

    Article  CAS  Google Scholar 

  33. Weber, T. et al. SNAREpins are functionally resistant to disruption by NSF and alpha-SNAP. J. Cell Biol. 149, 1063–1072 (2000).

    Article  CAS  Google Scholar 

  34. Umemoto, N., Yoshihisa, T., Hirata, R. & Anraku, Y. Roles of the Vma3 gene product, subunit c of the vacuolar membrane H+-ATPase on vacuolar acidification and protein transport. J. Biol. Chem. 265, 18447–18453 (1990).

    CAS  PubMed  Google Scholar 

  35. Klionsky, D. J., Nelson, H. & Nelson, N. Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J. Biol. Chem. 267, 3416–3422 (1992).

    CAS  PubMed  Google Scholar 

  36. Morano, K. A. & Klionsky, D. J. Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J. Cell Sci. 107, 2813–2824 (1994).

    CAS  PubMed  Google Scholar 

  37. Yamashiro, C. T. et al. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton translocating ATPase. Mol. Cell. Biol. 10, 3737–3749 (1990).

    Article  CAS  Google Scholar 

  38. Kibble, V. A. & Burgoyne, R. D. Calmodulin increases the initial rate of exocytosis in adrenal chromaffin cells. Eur. J. Physiol. 431, 464–466 (1996).

    Article  CAS  Google Scholar 

  39. Chen, Y., Duvvuri, V., Schulman, H. & Scheller, R. H. Calmodulin and protein kinase C increase Ca2+-stimulated secretion by modulating membrane-attached exocytic machinery. J. Biol. Chem. 274, 26469–26476 (1999).

    Article  CAS  Google Scholar 

  40. Bennett, M. K., Calakos, N., Kreiner, T. & Scheller, R. H. Synaptic vesicle membrane proteins interact to form a multimeric complex. J. Cell Biol. 116, 761–775 (1992).

    Article  CAS  Google Scholar 

  41. Galli, T., McPherson, P. S. & De Camilli, P. The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive complex. J. Biol. Chem. 271, 2193–2198 (1996).

    Article  CAS  Google Scholar 

  42. Harvey, W. R. & Wieczorek, H. Animal plasma membrane energization by chemiosmotic H+ V-ATPases. J. Exp. Biol. 200, 203–216 (1997).

    CAS  PubMed  Google Scholar 

  43. Conchon, S., Cao, X., Barlowe, C. & Pelham, H. R. B. Got1p and Sft2p: membrane proteins involved in traffic to the Golgi complex. EMBO J. 18, 3934–3946 (1999).

    Article  CAS  Google Scholar 

  44. Zimmerberg, J., Vogel, S. & Chernomordik, L. V. Mechanisms of membrane fusion. Annu. Rev. Biophys. Biomol. Struct. 22, 433–466 (1993).

    Article  CAS  Google Scholar 

  45. Albillos, A. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 (1997).

    Article  ADS  CAS  Google Scholar 

  46. Henkel, A. & Betz, W. J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci. 15, 8246–8258 (1995).

    Article  CAS  Google Scholar 

  47. Scepek, S., Coorssen, J. R. & Lindau, M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J. 17, 4340–4345 (1998).

    Article  CAS  Google Scholar 

  48. Plattner, H. & Knoll, G. in Signal Transduction During Biomembrane Fusion (ed. D. H. O'Day) 19–46 (Academic, San Diego, 1993).

    Google Scholar 

  49. Garcia-Segura, L. M., Muller, D. & Dunant, Y. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve–electroplaque junction. Neuroscience 19, 63–78 (1986).

    Article  CAS  Google Scholar 

  50. Chernomordik, L., Kozlov, M. M. & Zimmerberg, J. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14 (1995).

    Article  CAS  Google Scholar 

  51. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA 93, 14440–14445 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Gallwitz, P. Kane, R. Piper and M. Harrison for plasmids and strains; C. Baradoy for assistance; and the Boehringer Ingelheim Foundation and Deutsche Forschungsgemeinschaft (SFB446) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, C., Bayer, M., Bühler, S. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001). https://doi.org/10.1038/35054500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing