Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 210Pb in sediment cores

Abstract

RADIONUCLIDES in lake sediments may act as indicators of the sedimentation rate of particles on which they are adsorbed; these rates in turn provide a direct indication of the residence times of particles in the water column. The radionuclide 137Cs is anthropogenic (an atomic-bomb product), so that its concentration in sediments also reveals the input history of this species and thus a record of atmospheric contamination by this nuclide in the lake's watershed. Here we report measurements of 137Cs and the natural radionuclide 210Pb in cores from several stations throughout the three basins of Lake Baikal. The results confirm earlier indirect estimates1 of the mean sedimentation rate, and show that the effective settling rate of these radionuclides is the same as that in the Great Lakes; the longer residence times for Lake Baikal are therefore simply a consequence of its greater depth. As well as allowing estimates of fluxes at the sediment–water interface2–1, our results provide information on the timing of palaeolimnological events5, on the existence of different depositional zones throughout the lake, on the long-term (decadal) diffusion of nuclides in sediments6 and for the development of mass-balance models for sediments and contaminants7–9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kozhov, M. Monographiae biol. 11, 1–344 (1963).

    Article  Google Scholar 

  2. Robbins, J. A. & Edgington, D. N. Geochim. cosmochim. Acta 39, 285–304 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Robbins, J. A. in Biogeochemistry of Lead in the Environment (ed. Nriagu, J. O.) 285–293 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  4. Robbins, J. A. Hydrobiologia 92, 611–622 (1982).

    Article  Google Scholar 

  5. Robbins, J. A., Edgington, D. N. & Kemp, A. L. C. Quat. Res. 10, 256–278 (1976).

    Article  Google Scholar 

  6. Edgington, D. N. & Robbins, J. A. in Large Lakes Ecological Structure and Function (eds Tilzer, M. M. & Serruya, C.) 210–223 (Springer, Berlin, 1990).

    Google Scholar 

  7. Thomann, R. V. Can. J. Fish aquat. Sci. 34, 280–296 (1981).

    Article  Google Scholar 

  8. Thomann, R. V. & DiToro, D. M. J. Great Lakes Res. 9, 474–496 (1983).

    Article  CAS  Google Scholar 

  9. Edgington, D. N. & Nelson, D. M. in Application of Distribution Coefficients to Radiological Assessment Models (eds Sibley, T. H. & Myttenaere, C.) 250–266 (Elseuier, London, 1986).

    Google Scholar 

  10. Guinasso, N. L. & Schink, D. R. J. geophys. Res. 80, 3032–3043 (1975).

    Article  ADS  Google Scholar 

  11. Goldberg, E. D. & Koide, M. Geochim, cosmochim. Acta 26, 417–450 (1962).

    Article  ADS  CAS  Google Scholar 

  12. Hutchinson, G. E. A Treatise on Limnology, 1–1015 (Wiley, London, 1957).

    Google Scholar 

  13. Afanasayev, A. N. Trans. Limnol. Inst. Acad. Sci. Siberian Division 25, 238–244 (1976). (in Russian).

    Google Scholar 

  14. Goldyorev, G. S., Granina, L. Z. & Tarasova, E. N. in Paths of Knowledge of Baikal (eds Galazi, G. I. & Votintsev, K. K.) 47–53 (Limnol. Inst. Acad. Sci., Novosibirsk, 1987) (in Russian).

    Google Scholar 

  15. Ritchi, J. C. & McHenry, J. R. J. envir. Qual. 19, 215–233 (1990).

    Article  Google Scholar 

  16. DiToro, D. M. Chemosphere 14, 1503–1538 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Edgington, D. N. & Nelson, D. M. in Int. Symp. Behavior of Long-Lived Radionuclides in the Marine Environment (eds Cigna, A. & Myttenaere, C.) 19–68 (EURATOM-9214, 1984).

    Google Scholar 

  18. Alberts, J. J., Wahlgren, M. A., Orlandini, K. A. & Durbahn, C. A. J. envir. Radiochem. 9, 89–103 (1989).

    Article  CAS  Google Scholar 

  19. Robbins, J. A., Mudroch, A. & Oliver, B. G. Can J. aquat. Sci. 47, 572–587 (1990).

    Article  CAS  Google Scholar 

  20. Evans, D. W., Alberts, J. J. & Clark, III R. A. Geochim. cosmochim. Acta 47, 1041–1050 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Davis, R. B. et al. Chem. Geol. 44, 151–185 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Robbins, J. A. The Coupled Lakes Model for Estimating the Long-Term Response of the Great Lakes to Time Dependent Loadings of Particle Associated Contaminants. Great Lakes Envir. Res. Laboratory Tech. Memo, ERL-GLERL-57 1–41 (Ann Arbor, 1985).

  23. Robbins, J. A. Great Lakes Regional Fallout Source Functions. Great Lakes Envir. Res. Laboratory Tech. Memo, ERL-GLERL-56 1–21 (1986).

  24. Berner, R. A. Earth planet. Sci. 29, L333–L340 (1976).

    Article  ADS  Google Scholar 

  25. Robbins, J. A. J. geophys. Res. 91, 8542–8558 (1986).

    Article  ADS  Google Scholar 

  26. Eadie, B. J. & Robbins, J. A. in Sources and Fates of Aquatic Pollutants (eds Hites, R. A. & Eisenreich, S. J.) 319–364 (American Chemical Society, Washington, DC 1987).

    Book  Google Scholar 

  27. Walhgren, M. A., Robbins, J. A. & Edgington, D. N. in Transuranic Elements in the Environment (ed. Hanson, W. C. ) 658–683 (US Dept of Energy, Technical Information Center, Springfield, Virginia, DOE/TIC/22800, 1980).

    Google Scholar 

  28. Rangarajan, C., Gopalakrishnan, S. & Eapen, D. C. in Health & Safety Laboratory Environmental Quarterly, Sept.-Dec. 1975 (ed. Hardy, E. P.) 163–182 (USERDA Report HASL-298, 1976).

    Google Scholar 

  29. Pelletier, C. A., Whipple, G. H. & Wedlick, H. L. in Radioactive Fallout from Nuclear Weapons Tests, Proc. 2nd Conf. (ed. Klement, A. N. Jr.) 723–736 (USAEC TID, Germantown, Maryland, 1964).

    Google Scholar 

  30. Talbot, R. W. & Andren, A. W. Geochim. cosmochim. Acta 48, 2053–2063 (1984).

    Article  ADS  CAS  Google Scholar 

  31. Joseph, A. B., Gustafson, P. F., Russel, E. A., Volchok, H. L. & Tamplin, A. in Radioactivity in the Marine Environment 6–41 (National Academy of Sciences, Washington, DC, 1971).

    Google Scholar 

  32. Scott, M. R., Rotter, R. J. & Salter, P. R. Earth planet. Sci. 75, L321–L326 (1985).

    Article  ADS  Google Scholar 

  33. Edgington, D. N. & Lucas, H. F. J. radioanal. Chem. 5, 233–250 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgington, D., Klump, J., Robbins, J. et al. Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 210Pb in sediment cores. Nature 350, 601–604 (1991). https://doi.org/10.1038/350601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing