Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States

Abstract

Stable continental regions, free from tectonic activity, are generally found only within ancient cratons—the centres of continents which formed in the Archaean era, 4.0–2.5 Gyr ago. But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stable1,2, whereas some older (late Archaean) regions have been tectonically disturbed1,3, suggesting that age alone does not determine lithospheric strength and crustal stability. Here we report rhenium–osmium isotope and mineral compositions of peridotite xenoliths from two regions of the Cordilleran mountain belt. We found that the younger, undeformed Colorado plateau is underlain by lithospheric mantle that is ‘depleted’ (deficient in minerals extracted by partial melting of the rock), whereas the older (Archaean), yet deformed, southern Basin and Range province is underlain by ‘fertile’ lithospheric mantle (not depleted by melt extraction). We suggest that the apparent relationship between composition and lithospheric strength, inferred from different degrees of crustal deformation, occurs because depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock). This allows the depleted mantle to form a thicker thermal boundary layer4 between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface. The inference that not all Archaean crust developed a strong and thick thermal boundary layer leads to the possibility that such ancient crust may have been overlooked because of its intensive reworking or lost from the geological record owing to preferential recycling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Digital elevation map showing topographic features within the Cordilleran orogenic belt, most of which are associated with late Cenozoic tectonism.
Figure 2: Re–Os isotopic constraints on the age of lithospheric mantle beneath Mojavia and the Colorado plateau.
Figure 3: Comparison of the bulk Mg# of lithospheric mantle beneath typical Archaean cratons, the tectonized Mojavia block, and the strong Colorado plateau, N, number of samples.
Figure 4: Isopycnic density curves, illustrating the role of bulk composition in determining lithospheric thickness.

Similar content being viewed by others

References

  1. Bennett, V. C. & DePaolo, D. J. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geol. Soc. Am. Bull. 99, 674–685 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Ramo, O. T. & Calzia, J. P. Nd isotopic composition of cratonic rocks in the southern Death Valley region: evidence for a substantial Archean source component in Mojavia. Geology 26, 891–894 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Wendlandt, E., DePaolo, D. J. & Baldridge, W. S. Nd and Sr isotope chronostratigraphy of Colorado Plateau lithosphere: implications for magmatic and tectonic underplating of the continental crust. Earth Planet. Sci. Lett. 116, 23–43 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Burchfiel, B. C. & Davis, G. A. Nature and controls of Cordilleran orogenesis, western United States: extensions of an earlier synthesis. Am. J. Sci. 275, 363–396 (1975).

    Article  Google Scholar 

  6. Wernicke, B., Axen, G. J. & Snow, J. K. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geol. Soc. Am. Bull. 100, 1738–1757 (1988).

    Article  ADS  Google Scholar 

  7. Dickinson, W. R. in Geologic Evolution of Arizona (eds Jenney, J. P. & Reynolds, S. J.) 1–16 (Arizona Geological Society Digest, Vol. 17, Arizona Geological Survey, Tucson, AZ, 1989).

    Google Scholar 

  8. Lee, C.-T., Yin, Q.-Z., Rudnick, R. L., Chesley, J. T. & Jacobsen, S. B. Os isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science 289, 1912–1916 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Wooden, J. L. & Miller, D. M. Chronologic and isotopic framework for early Proterozoic crustal evolution in the eastern Mojave desert region, SE California. J. Geophys. Res. 95, 20133–20146 (1990).

    Article  ADS  Google Scholar 

  10. Smith, D. Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J. Geophys. Res. 105, 16769–16781 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Pollack, H. N. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80, 175–182 (1986).

    Article  ADS  Google Scholar 

  12. Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–1595 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Reisberg, L. & Lorand, J.-P. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159–162 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Handler, M. R. & Bennett, V. C. Behaviour of platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion. Geochim. Cosmochim. Acta 63, 3597–3618 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Alibert, C. Peridotite xenoliths from western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado Plateau. J. Geophys. Res. 99, 21605–21620 (1994).

    Article  ADS  Google Scholar 

  16. Roden, M. F., Smith, D. & Murthy, V. R. Chemical constraints on lithosphere composition and evolution beneath the Colorado Plateau. J. Geophys. Res. 95, 2811–2831 (1990).

    Article  ADS  Google Scholar 

  17. Rudnick, R. L., McDonough, W. F. & Orpin, A. in Proc. Vth Int. Kimberlite Conf. Vol. 1 (eds Meyer, H. O. A. & Leonardos, O.) 336–353 (Companhia de Pesquisa de Recursos Minerais Spec. Publ. 1, Rio de Janeiro, 1994).

    Google Scholar 

  18. Lee, C.-T. & Rudnick, R. L. in Proc. VIIth Int. Kimberlite Conf. P. H. Nixon Vol. (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) 503–521 (Red Roof Design, Cape Town, 1999).

    Google Scholar 

  19. Boyd, F. R. & Mertzman, S. A. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 13–24 (Spec. Publ. Vol. 1, Geochemical Society, University Park, Pennsylvania, 1987).

    Google Scholar 

  20. Winterburn, P. A., Harte, B. & Gurney, J. J. Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary-metasomatic mineralogy. Geochim. Cosmochim. Acta 54, 329–341 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Boyd, F. R. et al. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 128, 228–246 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Wilshire, H. G., McGuire, A. V., Noller, J. S. & Turin, B. D. Petrology of lower crustal and upper mantle xenoliths from the Cima volcanic field, California. J. Petrol. 32, 169–200 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Ehrenberg, S. N. Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic field. J. Petrol. 23, 507–547 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Rudnick, R. L., McDonough, W. F. & O'Connell, R. J. Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 395–411 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Sass, J. H. et al. Thermal regime of the southern Basin and Range Province: 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada. J. Geophys. Res. 99, 22093–22119 (1994).

    Article  ADS  Google Scholar 

  26. Shapiro, S. S., Hager, B. H. & Jordan, T. H. The continental tectosphere and Earth's long-wavelength gravity field. Lithos 48, 135–152 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Hirth, G., Evans, R. L. & Chave, A. D. Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochem. Geophys. Geosys. [online] 〈http://146.201.254.53/publicationsfinal/articles/2000GC000048/article2000GC000048.pdf (2000).

  28. Bowring, S. A. & Housh, T. The Earth's early evolution. Science 269, 1535–1540 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Nyblade, A. A. & Pollack, H. N. A global analysis of heat flow from Precambrian terrains: implications for thermal structure of Archean and Proterozoic lithosphere. J. Geophys. Res. 98, 12207–12218 (1993).

    Article  ADS  Google Scholar 

  30. Bass, J. D. in Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. Ahrens, T. J.) 45–63 (American Geophysical Union, Washington, District of Columbia, 1995).

    Google Scholar 

  31. McDonough, W. F. The composition of the Earth. Chem. Geol. 120, 1535–1540 (1995).

    Article  Google Scholar 

  32. Brey, G. P. & Kohler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

All samples, except for CiP98-8 and CiP98-64, were borrowed from the Smithsonian Institution (we thank S. Sorensen for her curation of these specimens). We thank J. Chesley, M. Handler, A. Nyblade, D.G. Pearson, D. Smith and R.J. Walker for comments on the manuscript. This work was supported by the NSF, and C.-T.L. was supported in part by an NSF graduate fellowship and a Mineralogical Society of America grant for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cin-Ty Lee.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CT., Yin, Q., Rudnick, R. et al. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411, 69–73 (2001). https://doi.org/10.1038/35075048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing