Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica

Abstract

Liquid silica is the archetypal glass former, and compounds based on silica are ubiquitous as natural and man-made amorphous materials. Liquid silica is also the extreme case of a ‘strong’ liquid, in that the variation of viscosity with temperature closely follows the Arrhenius law as the liquid is cooled toward its glass transition temperature1,2. In contrast, most liquids are to some degree ‘fragile’, showing significantly faster increases in their viscosity as the glass transition temperature is approached. Recent studies3,4,5,6,35,36 have demonstrated the controlling influence of the potential energy hypersurface (or ‘energy landscape’) of the liquid on the transport properties near the glass transition. But the origin of strong liquid behaviour in terms of the energy landscape has not yet been resolved. Here we study the static and dynamic properties of liquid silica over a wide range of temperature and density using computer simulations. The results reveal a change in the energy landscape with decreasing temperature, which underlies a transition from a fragile liquid at high temperature to a strong liquid at low temperature. We also show that a specific heat anomaly is associated with this fragile-to-strong transition, and suggest that this anomaly is related to the polyamorphic behaviour of amorphous solid silica.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of inherent structure energy eIS with temperature T.
Figure 2: Entropy S and its component contributions as a function of temperature.
Figure 3: Relationship of diffusion coefficient D to temperature T and configurational entropy Sc.
Figure 4: Potential energy U and isochoric specific heat CV as a function of T.

Similar content being viewed by others

References

  1. Angell, C. A. Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  2. Richet, P. Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471–483 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Buechner, S. & Heuer, A. The potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. Phys. Rev. E 60, 6507–6518 (1999).

    Article  ADS  Google Scholar 

  5. Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Martinez, L.-M. & Angell, C. A. A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663–667 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

  8. Stillinger, F. H. & Weber, T. A. Packing structures and transitions in liquids and solids. Science 225, 983–989 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Sciortino, F. & Tartaglia, P. Extension of the fluctuation-dissipation theorem to the physical aging of a model glass-forming liquid. Phys. Rev. Lett. 86, 107–111 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Starr, F. W., Sastry, S., La Nave, E., Scala, S., Stanley, H. E. & Sciortino, F. Thermodynamic and structural aspects of the potential energy surface of simulated water. Phys. Rev. E 63, 041201 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Rossler, E., Hess, K.-U. & Novikov, V. N. Universal representation of viscosity in glass forming liquids. J. Non-Cryst. Solids 223, 207–222 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Hess, K.-U., Dingwell, D. B. & Rossler, E. Parametrization of viscosity–temperature relations of aluminosilicate melts. Chem. Geol. 128, 155–163 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Barrat, J.-L., Badro, J. & Gillet, P. A strong to fragile transition in a model of liquid silica. Molecular Simulation 20, 17–25 (1997).

    Article  CAS  Google Scholar 

  15. Horbach, J. & Kob, W. Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60, 3169–3181 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Van Beest, B. W. H., Kramer, G. J. & van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B 103, 4060–4065 (1999).

    Article  CAS  Google Scholar 

  18. Hemmati, M., Moynihan, C. T. & Angell, C. A. Density maxima and minima, and water-like heat capacity and transport anomalies, in liquid BeF2. J. Chem. Phys. (in the press).

  19. Angell, C. A. Water II is a strong liquid. J. Phys. Chem. 97, 6339–6341 (1993).

    Article  CAS  Google Scholar 

  20. Speedy, R. J. The hard sphere glass transition. Mol. Phys. 95, 169–178 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity of supercooled water. Nature 406, 166–169 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Johari, G. P. Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J. Chem. Phys. 112, 7518–7523 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Goldstein, M. Viscous liquids and the glass transition: sources of the excess heat capacity. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  ADS  CAS  Google Scholar 

  24. Coluzzi, B., Parisi, G. & Verrocchio, P. Thermodynamical liquid-glass transition in a Lennard-Jones binary mixture. Phys. Rev. Lett. 84, 306–309 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Bell, R. J. & Dean, P. The configurational entropy of vitreous silica in the random network theory. Phys. Chem. Glasses 9, 125–127 (1968).

    CAS  Google Scholar 

  26. Speedy, R. J. & Debenedetti, P. G. The distribution of tetravalent network glasses. Mol. Phys. 88, 1293–1316 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Stillinger, F. H., Debenedetti, P. G. & Sastry, S. Resolving vibrational and inherent structural contributions to isothermal compressibility. J. Chem. Phys. 109, 3983–3988 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Jagla, E. A. Fragile-strong transitions and polyamorphism in glass forming fluids. Mol. Phys. 99, 753–757 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Saika-Voivod, I., Sciortino, F. & Poole, P. H. Computer simulation of liquid silica: equation of state and liquid–liquid phase transition. Phys. Rev. E 63, 011202 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Sastry, S., Debenedetti, P. G., Sciortino, F. & Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 63, 6144–6154 (1996).

    Article  ADS  Google Scholar 

  31. Rebelo, L. P. N., Debenedetti, P. G. & Sastry, S. Singularity-free interpretation of the thermodynamics of supercooled water. II. Thermal and volumetric behavior. J. Chem. Phys. 109, 626–633 (1998).

    Article  ADS  CAS  Google Scholar 

  32. Poole, P. H., Grande, T., Angell, C. A. & McMillan, P. F. Polymorphic phase transitions in liquids and glasses. Science 275, 322–323 (1997).

    Article  CAS  Google Scholar 

  33. Mezei, M. & Beveridge, D. L. Free energy simulations. Ann. NY Acad. Sci. 482, 1–23 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Scheidler, P., Kob, W., Latz, A., Horbach, J. & Binder, K. Frequency-dependent specific heat of silica. Phys. Rev. B 63, 104204 (2001).

    Article  ADS  Google Scholar 

  35. Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell, W. Kob, S. Sastry and R. Speedy for discussions. I.S.-V. and P.H.P. thank NSERC (Canada) for financial support, and SHARCNET for computing resources. F.S. acknowledges support from the INFM ‘Iniziativa Calcolo Parallelo’ and PRE-HOP and from MURST PRIN 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saika-Voivod, I., Poole, P. & Sciortino, F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412, 514–517 (2001). https://doi.org/10.1038/35087524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087524

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing