Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conditional control of gene expression in the mouse

Key Points

  • Temporal and spatial control of gene expression in the mouse can be achieved using binary transgenic systems, in which gene expression is controlled by the interaction of an effector protein product on a target transgene. These interactions are controlled by crossing mouse lines, or by adding or removing an exogenous inducer.

  • Binary transgenic systems fall into two categories. One is based on transcriptional transactivation and is well suited for activating transgenes in gain-of-function experiments. The other is based on site-specific DNA recombination and can be used to activate transgenes or to generate tissue-specific gene knockouts and cell-lineage markers.

  • The most commonly used transcriptional systems are based on the tetracycline resistance operon of Escherichia coli. The effectors of these systems fall into two categories defined by whether transcription activation occurs upon the administration or depletion of a tetracycline compound (usually doxycycline).

  • The Gal4-based system is a transactivation system that does not require an inducer, but Gal4 transcriptional activation can be controlled by synthetic steroids when a mutated ligand-binding domain is incorporated into a Gal4 chimeric transactivator.

  • The most widely used site-specific DNA recombination system uses the Cre recombinase from bacteriophage P1. The Flp recombinase from Saccharomyces cerevisiae has also been adapted for use in mice.

  • By using gene-targeting techniques to produce mice with modified endogenous genes that can be acted on by Cre or Flp recombinases expressed under the control of tissue-specific promoters, site-specific recombination can be used to inactivate endogenous genes in a spatially controlled manner.

  • Cre/Flp activity can also be controlled temporally by delivering cre/FLP-encoding transgenes in viral vectors, by administering exogenous steroids to mice that carry a chimeric transgene consisting of the cre gene fused to a mutated ligand-binding domain, or by using transcriptional transactivation to control cre/FLP expression.

  • The irreversibility of site-specific recombination makes this technique uniquely suited for a new type of analysis in which the transient tissue-specific expression of cre/FLP is used to permanently activate a reporter target gene for cell-lineage studies.

Abstract

One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tetracycline-responsive regulatory system for transcriptional transactivation.
Figure 2: Transactivation based on the Gal4/UAS system.
Figure 3: Controlling gene expression by DNA recombination.
Figure 4: Fate mapping the descendants of a gene-expression domain.
Figure 5: Inducible Cre systems.

Similar content being viewed by others

References

  1. Yarranton, G. T. Inducible vectors for expression in mammalian cells. Curr. Opin. Biotechnol. 3, 506–511 (1992).

    CAS  PubMed  Google Scholar 

  2. Khillan, J. S. et al. Gene transactivation mediated by the TAT gene of human immunodeficiency virus in transgenic mice. Nucleic Acids Res. 16, 1423–1430 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bieberich, C. J., King, C. M., Tinkle, B. T. & Jay, G. A transgenic model of transactivation by the Tax protein of HTLV-I. Virology 196, 309–318 (1993).

    CAS  PubMed  Google Scholar 

  4. Nerenberg, M., Hinrichs, S. H., Reynolds, R. K., Khoury, G. & Jay, G. The tat gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237, 1324–1329 (1987).

    CAS  PubMed  Google Scholar 

  5. Byrne, G. W. & Ruddle, F. H. Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc. Natl Acad. Sci. USA 86, 5473–5477 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gardner, D. P., Byrne, G. W., Ruddle, F. H. & Kappen, C. Spatial and temporal regulation of a lacZ reporter transgene in a binary transgenic mouse system. Transgenic Res. 5, 37–48 (1996).

    CAS  PubMed  Google Scholar 

  7. Rundle, C. H., Macias, M. P., Yueh, Y. G., Gardner, D. P. & Kappen, C. Transactivation of Hox gene expression in a VP16-dependent binary transgenic mouse system. Biochim. Biophys. Acta 1398, 164–178 (1998).

    CAS  PubMed  Google Scholar 

  8. Yueh, Y. G., Yaworsky, P. J. & Kappen, C. Herpes simplex virus transcriptional activator VP16 is detrimental to preimplantation development in mice. Mol. Reprod. Dev. 55, 37–46 (2000).

    CAS  PubMed  Google Scholar 

  9. Shockett, P., Difilippantonio, M., Hellman, N. & Schatz, D. G. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl Acad. Sci. USA 92, 6522–6526 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baron, U., Gossen, M. & Bujard, H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baron, U. & Bujard, H. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol. 327, 401–421 (2000).A useful primer of the TetR-based systems for investigators who are considering this approach.

    CAS  PubMed  Google Scholar 

  12. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    CAS  PubMed  Google Scholar 

  14. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasan, M. T., Schonig, K., Berger, S., Graewe, W. & Bujard, H. Long-term, noninvasive imaging of regulated gene expression in living mice. Genesis 29, 116–122 (2001).This study provides a model for the non-invasive imaging of conditional gene expression in mice, in which the TetR system was used to simultaneously regulate two transgenes, which encode Cre and luciferase, from a bidirectional promoter. A photon-imaging system was then used to follow the expression of luciferase in living mice.

    CAS  PubMed  Google Scholar 

  16. Lee, P. et al. Conditional lineage ablation to model human diseases. Proc. Natl Acad. Sci. USA 95, 11371–11376 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin, M. K., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501 (1999).This paper reports the use of gene targeting to produce three mouse lines in which wild-type Ednrb alleles were replaced with transgenes that encode either tTA or rtTA, or a tetO Ednrb target gene. These lines were crossed to produce mice in which all Ednrb activity was doxycycline regulatable.

    CAS  PubMed  Google Scholar 

  18. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).The value of being able to induce and then repress transgene transactivation is shown in this paper, as well as in references 19–24.

    CAS  PubMed  Google Scholar 

  19. Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R. & Bach, M. E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    CAS  PubMed  Google Scholar 

  20. Ewald, D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384–1386 (1996).

    CAS  PubMed  Google Scholar 

  21. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    CAS  PubMed  Google Scholar 

  22. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  23. Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reversibility of acute B-cell leukaemia induced by BCR–ABL1. Nature Genet. 24, 57–60 (2000).

    CAS  PubMed  Google Scholar 

  24. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    CAS  PubMed  Google Scholar 

  25. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl Acad. Sci. USA 97, 7963–7968 (2000).Investigators considering a TetR-based approach should review the improved rtTA variants described here, as well as in reference 26.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wells, K. D., Foster, J. A., Moore, K., Pursel, V. G. & Wall, R. J. Codon optimization, genetic insulation, and an rtTA reporter improve performance of the tetracycline switch. Transgenic Res. 8, 371–381 (1999).

    CAS  PubMed  Google Scholar 

  27. Baron, U., Freundlieb, S., Gossen, M. & Bujard, H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000).

    CAS  PubMed  Google Scholar 

  29. Baron, U. et al. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc. Natl Acad. Sci. USA 96, 1013–1018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ornitz, D. M., Moreadith, R. W. & Leder, P. Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc. Natl Acad. Sci. USA 88, 698–702 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    CAS  PubMed  Google Scholar 

  32. Rowitch, D. H. et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y., DeMayo, F. J., Tsai, S. Y. & O' Malley, B. W. Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnol. 15, 239–243 (1997).

    CAS  Google Scholar 

  34. Saam, J. R. & Gordon, J. I. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274, 38071–38082 (1999).

    CAS  PubMed  Google Scholar 

  35. Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA 96, 8483–8488 (1999).In this paper, topical application of a synthetic steroid was used to control Tgfb1 expression in mouse skin through the transactivator GLVPc, showing that Tgf-β1 inhibits epidermal cell growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, X. Role of TGFβ signaling in skin carcinogenesis. Microsc. Res. Tech. 52, 420–429 (2001).

    PubMed  Google Scholar 

  37. Pierson, T. M. et al. Regulable expression of inhibin A in wild-type and inhibin α null mice. Mol. Endocrinol. 14, 1075–1085 (2000).

    CAS  PubMed  Google Scholar 

  38. Sauer, B. & Henderson, N. Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Gorman, S., Fox, D. T. & Wahl, G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355 (1991).

    CAS  PubMed  Google Scholar 

  40. Buchholz, F., Angrand, P. O. & Stewart, A. F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nature Biotechnol. 16, 657–662 (1998).DNA-shuffling techniques are used here to modify the Flp recombinase so that it can function optimally at the body temperature of mice.

    CAS  Google Scholar 

  41. Gu, H., Zou, Y. R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre–loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    CAS  PubMed  Google Scholar 

  42. Lewandoski, M., Meyers, E. N. & Martin, G. R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997).

    CAS  PubMed  Google Scholar 

  43. Le, Y., Gagneten, S., Tombaccini, D., Bethke, B. & Sauer, B. Nuclear targeting determinants of the phage P1 cre DNA recombinase. Nucleic Acids Res. 27, 4703–4709 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thyagarajan, B., Guimaraes, M. J., Groth, A. C. & Calos, M. P. Mammalian genomes contain active recombinase recognition sites. Gene 244, 47–54 (2000).

    CAS  PubMed  Google Scholar 

  45. Senecoff, J. F. & Cox, M. M. Directionality in FLP protein-promoted site-specific recombination is mediated by DNA–DNA pairing. J. Biol. Chem. 261, 7380–7386 (1986).

    CAS  PubMed  Google Scholar 

  46. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA 98, 9209–9214 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S. & Capecchi, M. R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl Acad. Sci. USA 97, 13702–13707 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. O'Gorman, S., Dagenais, N. A., Qian, M. & Marchuk, Y. Protamine–Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl Acad. Sci. USA 94, 14602–14607 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lewandoski, M., Wassarman, K. M. & Martin, G. R. Zp3cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7, 148–151 (1997).

    CAS  PubMed  Google Scholar 

  50. Abuin, A. & Bradley, A. Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16, 1851–1856 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dragatsis, I., Levine, M. S. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genet. 26, 300–306 (2000).

    CAS  PubMed  Google Scholar 

  52. Sakai, T. et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nature Med. 7, 324–330 (2001).

    CAS  PubMed  Google Scholar 

  53. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet. 27, 322–326 (2001).

    CAS  PubMed  Google Scholar 

  54. Brakebusch, C. et al. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J. 19, 3990–4003 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β-cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem. 274, 305–315 (1999).

    CAS  PubMed  Google Scholar 

  56. Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β-gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).This paper describes the first tissue-specific gene inactivation and provides a model for using three loxP sites to remove the selection cassette from the conditional allele in vitro . See references 59 and 60 for variations on this strategy.

    CAS  PubMed  Google Scholar 

  57. Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).An example of the allelogenic strategy as applied to the Fgf8 locus, in which three alleles (hypomorphic, conditional and null) were generated from one mouse line.

    CAS  PubMed  Google Scholar 

  58. Nagy, A. et al. Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8, 661–664 (1998).A demonstration of how to produce an allelic series, which includes alleles with any desirable mutation, using the N-Myc locus as an example.

    CAS  PubMed  Google Scholar 

  59. Xu, X. et al. Direct removal in the mouse of a floxed neo gene from a three-loxp conditional knockout allele by two novel approaches. Genesis 30, 1–6 (2001).

    PubMed  Google Scholar 

  60. Holzenberger, M. et al. Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. Nucleic Acids Res. 28, E92 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Partanen, J., Schwartz, L. & Rossant, J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev. 12, 2332–2344 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gage, P. J., Suh, H. & Camper, S. A. Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651 (1999).

    CAS  PubMed  Google Scholar 

  63. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Meyers, E. N. & Martin, G. R. Differences in left–right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285, 403–406 (1999).

    CAS  PubMed  Google Scholar 

  65. Trumpp, A., Depew, M. J., Rubenstein, J. L., Bishop, J. M. & Martin, G. R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13, 3136–3148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewandoski, M., Sun, X. & Martin, G. R. Fgf8 signalling from the AER is essential for normal limb development. Nature Genet. 26, 460–463 (2000).

    CAS  PubMed  Google Scholar 

  67. Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nature Genet. 26, 455–459 (2000).

    CAS  PubMed  Google Scholar 

  68. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).This reference and reference 72 provide two different models of how to achieve the otherwise difficult goal of near-ubiquitous transgene expression in the mouse. Such expression is ideal for producing mice that are useful as breeding partners for those that carry different tissue-specific cre or FLP transgenes.

    CAS  PubMed  Google Scholar 

  69. Mao, X., Fujiwara, Y. & Orkin, S. H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl Acad. Sci. USA 96, 5037–5042 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S. H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001).

    CAS  PubMed  Google Scholar 

  71. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lobe, C. G. et al. Z/AP, a double reporter for cre-mediated recombination. Dev. Biol. 208, 281–292 (1999).

    CAS  PubMed  Google Scholar 

  73. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    CAS  PubMed  Google Scholar 

  74. Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2, 292–297 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zinyk, D. L., Mercer, E. H., Harris, E., Anderson, D. J. & Joyner, A. L. Fate mapping of the mouse midbrain–hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668 (1998).

    CAS  PubMed  Google Scholar 

  76. Epstein, J. A. et al. Migration of cardiac neural crest cells in Splotch embryos. Development 127, 1869–1878 (2000).

    CAS  PubMed  Google Scholar 

  77. Chai, Y. et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127, 1671–1679 (2000).

    CAS  PubMed  Google Scholar 

  78. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    CAS  PubMed  Google Scholar 

  79. Herrera, P. L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  80. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    CAS  PubMed  Google Scholar 

  81. O'Gorman, S. & Barcarse, E. A. Multiple neuronal identities and migrations specified by a single Hox gene in mice. Development (in the press).

  82. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6232–6236 (1992).This first demonstration of Cre-mediated transgene activation provides a model for the general strategy. For an elaboration of this model, see reference 88 , and for an alternative model, see reference 83.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Grieshammer, U., Lewandoski, M., Prevette, D., Oppenheim, R. W. & Martin, G. R. Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev. Biol. 197, 234–247 (1998).

    CAS  PubMed  Google Scholar 

  84. Lewandoski, M. & Martin, G. R. Cre-mediated chromosome loss in mice. Nature Genet. 17, 223–225 (1997).

    CAS  PubMed  Google Scholar 

  85. Garrick, D., Fiering, S., Martin, D. I. & Whitelaw, E. Repeat-induced gene silencing in mammals. Nature Genet. 18, 56–59 (1998).

    CAS  PubMed  Google Scholar 

  86. Drago, J. et al. Targeted expression of a toxin gene to D1 dopamine receptor neurons by cre-mediated site-specific recombination. J. Neurosci. 18, 9845–9857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee, K. J., Dietrich, P. & Jessell, T. M. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740 (2000).

    CAS  PubMed  Google Scholar 

  88. Dragatsis, I. & Zeitlin, S. A method for the generation of conditional gene repair mutations in mice. Nucleic Acids Res. 29, E10 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Arin, M. J., Longley, M. A., Wang, X. J. & Roop, D. R. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J. Cell Biol. 152, 645–649 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cao, T., Longley, M. A., Wang, X. J. & Roop, D. R. An inducible mouse model for epidermolysis bullosa simplex: implications for gene therapy. J. Cell Biol. 152, 651–656 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    CAS  PubMed  Google Scholar 

  92. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  93. Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene activation in the liver. Mol. Cell. Biol. 21, 1621–1632 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rohlmann, A., Gotthardt, M., Hammer, R. E. & Herz, J. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Invest. 101, 689–695 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sjogren, K. et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl Acad. Sci. USA 96, 7088–7092 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lam, K. P. & Rajewsky, K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc. Natl Acad. Sci. USA 95, 13171–13175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    CAS  PubMed  Google Scholar 

  98. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  PubMed  Google Scholar 

  99. Kellendonk, C. et al. Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182 (1999).

    CAS  PubMed  Google Scholar 

  100. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Feil, R. et al. Ligand-activated site-specific recombination in mice. Proc. Natl Acad. Sci. USA 93, 10887–10890 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    CAS  PubMed  Google Scholar 

  103. Brocard, J. et al. Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc. Natl Acad. Sci. USA 94, 14559–14563 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schwenk, F., Kuhn, R., Angrand, P. O., Rajewsky, K. & Stewart, A. F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA 92, 6991–6995 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Y. et al. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Metzger, D. & Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 24, 71–80 (2001).

    CAS  PubMed  Google Scholar 

  108. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, Y., Wienands, J., Zurn, C. & Reth, M. Induction of the antigen receptor expression on B lymphocytes results in rapid competence for signaling of SLP-65 and Syk. EMBO J. 17, 7304–7310 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Imai, T., Jiang, M., Kastner, P., Chambon, P. & Metzger, D. Selective ablation of retinoid X receptor α in hepatocytes impairs their lifespan and regenerative capacity. Proc. Natl Acad. Sci. USA 98, 4581–4586 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kimmel, R. A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wunderlich, F. T., Wildner, H., Rajewsky, K. & Edenhofer, F. New variants of inducible Cre recombinase: a novel mutant of Cre–PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res. 29, E47 (2001).Investigators considering inducible cre experiments should review these improved Cre–PR variants, as well as the Cre–ER (T2) variant in references 113–115.

  113. Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre–ER(T) and Cre–ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Imai, T., Jiang, M., Chambon, P. & Metzger, D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor α mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre–ERT2) in adipocytes. Proc. Natl Acad. Sci. USA 98, 224–228 (2001).

    CAS  PubMed  Google Scholar 

  115. Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 407, 633–636 (2000).

    CAS  PubMed  Google Scholar 

  116. Utomo, A. R., Nikitin, A. Y. & Lee, W. H. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nature Biotechnol. 17, 1091–1096 (1999).

    CAS  Google Scholar 

  117. Holzenberger, M., Zaoui, R., Leneuve, P., Hamard, G. & Le Bouc, Y. Ubiquitous postnatal LoxP recombination using a doxycycline auto-inducible Cre transgene (DAI–Cre). Genesis 26, 157–159 (2000).

    CAS  PubMed  Google Scholar 

  118. St-Onge, L., Furth, P. A. & Gruss, P. Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rohlmann, A., Gotthardt, M., Willnow, T. E., Hammer, R. E. & Herz, J. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nature Biotechnol. 14, 1562–1565 (1996).

    CAS  Google Scholar 

  120. Wang, Y., Krushel, L. A. & Edelman, G. M. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl Acad. Sci. USA 93, 3932–3936 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Agah, R. et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Brooks, A. I., Muhkerjee, B., Panahian, N., Cory-Slechta, D. & Federoff, H. J. Nerve growth factor somatic mosaicism produced by herpes virus-directed expression of cre recombinase. Nature Biotechnol. 15, 57–62 (1997).

    CAS  Google Scholar 

  123. Christensen, G., Minamisawa, S., Gruber, P. J., Wang, Y. & Chien, K. R. High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101, 178–184 (2000).

    CAS  PubMed  Google Scholar 

  124. Brooks, A. I., Cory-Slechta, D. A. & Federoff, H. J. Gene–experience interaction alters the cholinergic septohippocampal pathway of mice. Proc. Natl Acad. Sci. USA 97, 13378–13383 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    CAS  PubMed  Google Scholar 

  126. Lee, Y. H., Sauer, B., Johnson, P. F. & Gonzalez, F. J. Disruption of the c/ebp α gene in adult mouse liver. Mol. Cell. Biol. 17, 6014–6022 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Piston, D. W., Knobel, S. M., Postic, C., Shelton, K. D. & Magnuson, M. A. Adenovirus-mediated knockout of a conditional glucokinase gene in isolated pancreatic islets reveals an essential role for proximal metabolic coupling events in glucose-stimulated insulin secretion. J. Biol. Chem. 274, 1000–1004 (1999).

    CAS  PubMed  Google Scholar 

  128. Ludwig, D. L., Stringer, J. R., Wight, D. C., Doetschman, H. C. & Duffy, J. J. FLP-mediated site-specific recombination in microinjected murine zygotes. Transgenic Res. 5, 385–395 (1996).

    CAS  PubMed  Google Scholar 

  129. Dymecki, S. M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 6191–6196 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Buchholz, F., Ringrose, L., Angrand, P. O., Rossi, F. & Stewart, A. F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nature Genet. 25, 139–140 (2000).

    CAS  PubMed  Google Scholar 

  132. Vooijs, M., van der Valk, M., te Riele, H. & Berns, A. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 17, 1–12 (1998).

    CAS  PubMed  Google Scholar 

  133. Logie, C. & Stewart, A. F. Ligand-regulated site-specific recombination. Proc. Natl Acad. Sci. USA 92, 5940–5944 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Logie, C., Nichols, M., Myles, K., Funder, J. W. & Stewart, A. F. Positive and negative discrimination of estrogen receptor agonists and antagonists using site-specific DNA recombinase fusion proteins. Mol. Endocrinol. 12, 1120–1132 (1998).

    CAS  PubMed  Google Scholar 

  135. Farley, F. W., Soriano, P., Steffen, L. S. & Dymecki, S. M. Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110 (2000).

    CAS  PubMed  Google Scholar 

  136. Rodriguez, C. I. & Dymecki, S. M. Origin of the precerebellar system. Neuron 27, 475–486 (2000).Flp expression is used here to permanently mark Wnt1 -expressing cells and to trace their descendants. This paper contains an informative discussion of the advantages and potential artefacts of this type of cell-lineage analysis.

    CAS  PubMed  Google Scholar 

  137. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001).

    CAS  PubMed  Google Scholar 

  138. Saez, E. et al. Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc. Natl Acad. Sci. USA 97, 14512–14517 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cronin, C. A., Gluba, W. & Scrable, H. The lac operator–repressor system is functional in the mouse. Genes Dev. 15, 1506–1517 (2001).This paper reports a modified lac operator–repressor system that functions in the mouse and was used to regulate a coat-colour transgene, such that its expression is IPTG responsive.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Diaz, V. et al. New insights into host factor requirements for prokaryotic β-recombinase-mediated reactions in mammalian cells. J. Biol. Chem. 276, 16257–16264 (2001).

    CAS  PubMed  Google Scholar 

  141. Thyagarajan, B., Olivares, E. C., Hollis, R. P., Ginsburg, D. S. & Calos, M. P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell. Biol. 21, 3926–3934 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shaikh, A. C. & Sadowski, P. D. Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre. J. Mol. Biol. 302, 27–48 (2000).

    CAS  PubMed  Google Scholar 

  143. Hartung, M. & Kisters-Woike, B. Cre mutants with altered DNA binding properties. J. Biol. Chem. 273, 22884–22891 (1998).

    CAS  PubMed  Google Scholar 

  144. Spencer, D. M. Creating conditional mutations in mammals. Trends Genet. 12, 181–187 (1996).

    CAS  PubMed  Google Scholar 

  145. Peterson, R. T., Link, B. A., Dowling, J. E. & Schreiber, S. L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl Acad. Sci. USA 97, 12965–12969 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Y., Xu, J., Pierson, T., O'Malley, B. W. & Tsai, S. Y. Positive and negative regulation of gene expression in eukaryotic cells with an inducible transcriptional regulator. Gene Ther. 4, 432–441 (1997).

    CAS  PubMed  Google Scholar 

  147. She, P. et al. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 20, 6508–6517 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, Y. et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc. Natl Acad. Sci. USA 96, 4455–4460 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hayhurst, G. P., Lee, Y. H., Lambert, G., Ward, J. M. & Gonzalez, F. J. Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21, 1393–1403 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Abel, E. D. et al. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J. Clin. Invest. 104, 1703–1714 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lowe, L. A., Yamada, S. & Kuehn, M. R. Genetic dissection of nodal function in patterning the mouse embryo. Development 128, 1831–1843 (2001).

    CAS  PubMed  Google Scholar 

  152. Matsuda, M. et al. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206–1216 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rucker, E. B. et al. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol. 14, 1038–1052 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to apologize to colleagues whose work is not mentioned due to lack of space. Many thanks to H. Bujard, S. Dymecki, C. Lobe, M. Magnuson, S. O'Gorman, D. Roop and D. Rowitch for helpful discussion and correspondence, and for sharing unpublished data. I would also like to thank G. Martin, S. Sharam, C. Stewart, L. Tessarollo, T. Yamaguchi and members of my lab for comments on the manuscript, and G. Martin for years of discussions, support and encouragement.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

MGI 

Ednrb

Fgf8

Fgrfr1

Hoxb1

huntingtin

Mx1

Sonic hedgehog

Tgfb1

Wnt1 

OMIM 

Huntington disease 

Saccharomyces genome database 

Gal4

FURTHER INFORMATION

ClonTech

Cre transgenic database

GeneSwitch™

Hermann Bujard's trouble-shooting guide

Knoll GmbH

Mark Lewandoski's lab

Glossary

CELL AUTONOMOUS

A genetic trait in which only genotypically mutant cells show the mutant phenotype.

CELL NON-AUTONOMOUS

A cell non-autonomous trait is one in which genotypically mutant cells cause other cells (regardless of their genotype) to show a mutant phenotype.

SQUELCHING

The titration of interacting molecules that are out of equilibrium by the overexpression of an interacting regulatory partner molecule, which can result in pleiotropic effects.

DIPHTHERIA TOXIN A SUBUNIT

(DTA). Diphtheria toxin consists of two subunits, A and B. The B-subunit binds receptors on the surface of the target cell, facilitating the entry of the A-subunit, which ADP-ribosylates elongation factor 2, thus preventing protein synthesis. The gene that encodes the A-subunit is often used as a cell-autonomous toxin in transgenic ablation experiments.

SELECTION CASSETTE

A DNA fragment that contains a transgene, which, when expressed, allows the selection of a subset of cells that have integrated the DNA fragment into their genomes.

POSITION EFFECTS

The effect of the local chromosomal environment on the levels or pattern of transgene expression, possibly because of local chromatin configuration or nearby cis-acting regulatory elements.

INSULATOR SITE

DNA sequence that blocks the interaction between cis-acting regulatory elements. These sites are sometimes used to protect transgenes from genomic position effects.

CONSERVATIVE DNA RECOMBINATION

A DNA recombination reaction in which there is no net change in base pairs between the products and the reactants.

HYPOMORPHIC ALLELE

An allele that results in a reduction, but not the elimination, of wild-type levels of gene product or activity, often causing a less severe phenotype than a loss-of-function (or null) allele.

ALLELIC SERIES

An array of possible mutant forms of a gene, which usually cause several phenotypes.

SEMI-DOMINANT ALLELE

An allele that causes an intermediate, incompletely dominant phenotype in heterozygotes.

ROSA26

A genetic locus that was originally identified by gene-trapping technology, which is constitutively transcribed.

PRONUCLEAR INJECTION

One of two methods for producing a transgenic mouse line (the other method being through germ-line transmission of transgenic embryonic stem cells). In this approach, DNA is microinjected into the nucleus of a mouse zygote. The DNA integrates randomly, usually into one genomic locus, as a multiple array.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandoski, M. Conditional control of gene expression in the mouse. Nat Rev Genet 2, 743–755 (2001). https://doi.org/10.1038/35093537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093537

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing