Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Splicing-related catalysis by protein-free snRNAs

Abstract

Removal of intervening sequences from eukaryotic messenger RNA precursors is carried out by the spliceosome, a complex assembly of five small nuclear RNAs (snRNAs) and a large number of proteins. Although it has been suggested that the spliceosome might be an RNA enzyme, direct evidence for this has been lacking, and the identity of the catalytic domain of the spliceosome is unknown. Here we show that a protein-free complex of two snRNAs, U2 and U6, can bind and position a small RNA containing the sequence of the intron branch site, and activate the branch adenosine to attack a catalytically critical domain of U6 in a reaction that is related to the first step of splicing. Our data provide direct evidence for the catalytic potential of spliceosomal snRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Base-pairing interactions in the in vitro-assembled complex of U2–U6 and the branch oligonucleotide (Br).
Figure 2: Characterization of RNA X.
Figure 3: Mapping the site of the covalent linkage in RNA X.
Figure 4: Characterization of the new covalent bond.
Figure 5: Mutagenesis of the branch oligonucleotide and U6.
Figure 6: Requirement of the branchpoint 2′OH: a model for the linkage between U6 and Br in RNA X.

Similar content being viewed by others

References

  1. Nilsen, T. W. In RNA Structure and Function (eds Simons, R. & Grunberg-Manago, M.) 279–307 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1998).

    Google Scholar 

  2. Burge, C. B., Tuschl, T. H. & Sharp, P. A. In RNA World II (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1998).

    Google Scholar 

  3. Hetzer, M., Wurzer, G., Schweyen, R. J. & Mueller, M. W. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386, 417–420 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Collins, C. A. & Guthrie, C. The question remains: is the spliceosome a ribozyme? Nature Struct. Biol. 7, 850–854 (2000).

    Article  CAS  Google Scholar 

  5. Newman, A. RNA splicing: out of the loop. Curr. Biol. 7, R418–R420 (1997).

    Article  CAS  Google Scholar 

  6. Yean, S. L., Wuenschell, G., Termini, J. & Lin, R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Sontheimer, E. J., Sun, S. & Piccirilli, J. A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Gordon, P. M., Sontheimer, E. J. & Piccirilli, J. A. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6, 199–205 (2000).

    Article  CAS  Google Scholar 

  9. O'Keefe, R. T., Norman, C. & Newman, A. J. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 86, 679–689 (1996).

    Article  CAS  Google Scholar 

  10. Segault, V. et al. Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol. Cell. Biol. 19, 2782–2790 (1999).

    Article  CAS  Google Scholar 

  11. Fabrizio, P. & Abelson, J. Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science 250, 404–409 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Madhani, H. D., Bordonne, R. & Guthrie, C. Multiple roles for U6 snRNA in the splicing pathway. Genes Dev. 4, 2264–2277 (1990).

    Article  CAS  Google Scholar 

  13. Datta, B. & Weiner, A. M. The phylogenetically invariant ACAGAGA and AGC sequences of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5377–5382 (1993).

    Article  CAS  Google Scholar 

  14. Wolff, T., Menssen, R., Hammel, J. & Bindereif, A. Splicing function of mammalian U6 small nuclear RNA: conserved positions in central domain and helix I are essential during the first and second step of pre-mRNA splicing. Proc. Natl Acad. Sci. USA 91, 903–907 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Sun, J. S. & Manley, J. L. A novel U2–U6 snRNA structure is necessary for mammalian mRNA splicing. Genes Dev. 9, 843–854 (1995).

    Article  CAS  Google Scholar 

  16. Fabrizio, P. & Abelson, J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 20, 3659–3664 (1992).

    Article  CAS  Google Scholar 

  17. Yu, Y. T., Maroney, P. A., Darzynkiwicz, E. & Nilsen, T. W. U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA 1, 46–54 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins, C. A. & Guthrie, C. Allele-specific genetic interactions between Prp8 and RNA active site residues suggest a function for Prp8 at the catalytic core of the spliceosome. Genes Dev. 13, 1970–1982 (1999).

    Article  CAS  Google Scholar 

  19. Siatecka, M., Reyes, J. L. & Konarska, M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 13, 1983–1993 (1999).

    Article  CAS  Google Scholar 

  20. Tuschl, T., Sharp, P. A. & Bartel, D. P. Selection in vitro of novel ribozymes from a partially randomized U2 and U6 snRNA library. EMBO J. 17, 2637–2650 (1998).

    Article  CAS  Google Scholar 

  21. Tuschl, T., Sharp, P. A. & Bartel, D. P. A ribozyme selected from variants of U6 snRNA promotes 2′,5′-branch formation. RNA 7, 29–43 (2001).

    Article  CAS  Google Scholar 

  22. Madhani, H. D. & Guthrie, C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 8, 1071–1086 (1994).

    Article  CAS  Google Scholar 

  23. Valadkhan, S. & Manley, J. L. A tertiary interaction detected in a human U2–U6 snRNA complex assembled in vitro resembles a genetically proven interaction in yeast. RNA 6, 206–219 (2000).

    Article  CAS  Google Scholar 

  24. Tarn, W. Y. & Steitz, J. A. Highly diverged U4 and U6 small nuclear RNAs required for splicing rare AT-AC introns. Science 273, 1824–1832 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Tarn, W. Y. & Steitz, J. A. Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem. Sci. 22, 132–137 (1997).

    Article  CAS  Google Scholar 

  26. Gish, G. & Eckstein, F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Boudvillain, M. & Pyle, A. M. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J. 17, 7091–7104 (1998).

    Article  CAS  Google Scholar 

  28. Burn, A. J. & Cadogan, J. I. G. The reactivity of organophosphorus compounds. Part IX, the reaction of thionates with alkyl iodides. J. Chem. Soc. 5532–5541 (1961).

  29. Saenger, W. Principles of Nucleic Acid Structure 116–126 (Springer, New York, 1984).

    Google Scholar 

  30. Query, C. C., Strobel, S. A. & Sharp, P. A. Three recognition events at the branch-site adenine. EMBO J. 15, 1392–1402 (1996).

    Article  CAS  Google Scholar 

  31. Query, C. C., Moore, M. J. & Sharp, P. A. Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev. 8, 587–597 (1994).

    Article  CAS  Google Scholar 

  32. Koole, L. H., Agback, P., Glemarec, C., Zhou, X.-X. & Chattopadhyaya, J. Solution structure of pentameric and heptameric branched-RNA modelling the lariat structure of group II or nuclear m-RNA introns studied by one- and two-dimensional NMR spectroscopy at 500 MHz. Tetrahedron 41, 3183–3206 (1991).

    Article  Google Scholar 

  33. Lehman, I. R. DNA ligase: structure, mechanism, and function. Science 186, 790–797 (1974).

    Article  ADS  CAS  Google Scholar 

  34. Yu, Y. T., Maroney, P. A. & Nilsen, T. W. Functional reconstitution of U6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5′ exon. Cell 75, 1049–1059 (1993).

    Article  CAS  Google Scholar 

  35. Tani, T. & Ohshima, Y. mRNA-type introns in U6 small nuclear RNA genes: implications for the catalysis in pre-mRNA splicing. Genes Dev. 5, 1022–1031 (1991).

    Article  CAS  Google Scholar 

  36. Huang, Z. & Szostak, J. W. A simple method for 3′-labeling of RNA. Nucleic Acids Res. 24, 4360–4361 (1996).

    Article  CAS  Google Scholar 

  37. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ryan for advice and helpful discussions and insights, T. Nilsen for suggestions and comments on the manuscript, and A. Pyle for helpful discussions, advice and suggestions. We also thank G. Zubay, D. Herschlag, T. Tuschl, M. Konarska, G. Just, H. Lonnberg and F. Eckstein for discussions and advice on the chemistry of the reaction, and H. Robertson and D. Bartel for discussion and comments. We also thank P. Nouri for technical assistance. This work is supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Manley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valadkhan, S., Manley, J. Splicing-related catalysis by protein-free snRNAs. Nature 413, 701–707 (2001). https://doi.org/10.1038/35099500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing