Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural origin of reduced critical currents at YBa2Cu3O7–δ grain boundaries

Abstract

THE critical current density across individual grain boundaries in thin films of the high-Tc superconductor YBa2Cu3O7–δ (YBCO) has been found1–4 to be inversely proportional to lattice misorientation for tilts up to 10°. Reports of impurity segregation5,6 at grain boundaries, and variations in the chemical stoichiometry7,8, have led to the view that deviations from the ideal composition are responsible for the depressed superconducting order parameter at the boundary. Here we present images of YBCO grain boundaries obtained by a scanning transmission electron microscope in Z-contrast mode9,10, which show that chemical segregation does not necessarily occur at these boundaries. A simple model of the strain associated with the grain-boundary dislocations provides a reasonable physical explanation of the suppressed superconductivity. The surprisingly large effect of strain implied by our model has implications beyond critical currents, for the physics and applications of any thin-film YBCO structures involving strained epitaxial layers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chaudhari, P. et al. Phys. Rev. Lett. 60, 1653–1656 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Dimos, D., Chaudhari, P., Mannhart, J. & LeGoues, F. K. Phys. Rev. Lett. 61, 219–222 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C. & McGuire, T. R. Phys. Rev. Lett. 61, 2476–2479 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Dimos, D., Chaudhari, P. & Mannhart, J. Phys. Rev. B 41, 4038–4049 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Camps, R. A. et al. Nature 329, 229–232 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Nakahara, S. et al. J. Cryst. Growth 85, 639–651 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Babcock, S. E. & Larbalestier, D. C. Appl. Phys. Lett. 55, 393–395 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Kroeger, D. M. et al. J. appl. Phys. 64, 331–335 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Pennycook, S. J. & Boatner, L. A. Nature 336, 565–567 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Pennycook, S. J. & Jesson, D. E. Phys. Rev. Lett. 64, 938–941 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Babcock, S. E., Cai, X. Y., Kaiser, D. L. & Larbalestier, D. C. Nature 347, 167–169 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Clarke, D. R., Shaw, T. M. & Dimos, D. J. Am. Ceram. Soc. 72, 1103–1113 (1989).

    Article  CAS  Google Scholar 

  13. Campbell, A. M. Supercond. Sci. Technol. 2, 287–293 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Chisholm, M. F. & Smith, D. A. Phil. Mag. A59, 181–197 (1989).

    Article  CAS  Google Scholar 

  15. Pennycook, S. J., Berger, S. D. & Culbertson, R. J. J. Microsc. 144, 229–249 (1986).

    Article  Google Scholar 

  16. Rothman, S. J., Routbort, J. L. & Baker, J. E. Phys. Rev. B 40, 8852–8860 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Cava, R. J. Science 247, 656–662 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Summers, G. P., Burke, E. A., Chrisey, D. B., Natasi, M. & Tesmer, J. R. Appl. Phys. Lett. 55, 1469–1471 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Marwick, A. D., Guarnieri, C. R. & Manoyan, J. M. Appl. Phys. Lett. 53, 2713–2714 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Gupta, A. et al. Phys. Rev. Lett. 64, 3191–3194 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Cottrell, A. H. Dislocations and Plastic Flow in Crystals (Clarendon Press, Oxford, 1953).

    MATH  Google Scholar 

  22. Chan, S.-W. et al. in High Tc Superconducting Thin Films Am. Inst. Phys. Conf. Proc. No. 200 (ed. Stockbour, R.) 172–189 (American Institute of Physics, New York, 1990).

    Google Scholar 

  23. Smith, D. A., Chisholm, M. F. & Clabes, J. Appl. Phys. Lett. 53, 2344–2345 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chisholm, M., Pennycook, S. Structural origin of reduced critical currents at YBa2Cu3O7–δ grain boundaries. Nature 351, 47–49 (1991). https://doi.org/10.1038/351047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing