Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of hierarchical multiple protostellar cores

Abstract

BINARY pre-main-sequence stars1,2 seem to occur as frequently as binary main-sequence stars3,4; triple pre-main-sequence star systems have also been detected5, and hierarchical main-sequence multiple stars continue to be identified6. (Hierarchical systems contain both closely spaced stars and stars orbiting at much greater distances.) These observations suggest that essentially all binary stars were formed before the main-sequence phase of evolution. The detection of a number of binary young stellar objects7,8 seems to indicate that binary formation must occur no later than the protostellar phase (further observations are needed to establish if this is the case for multiple star systems). Here I describe numerical hydrodynamical calculations showing that stable hierarchical systems of multiple protostellar cores can form through gravitationally driven fragmentation during the collapse of an isolated gas cloud, suggesting that the hierarchical systems observed may be the result of the hydrodynamical collapse of rapidly rotating clouds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mathieu, R. D., Walter, F. M. & Myers, P. C. Astr. J. 98, 987–1001 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Chen, W. P., Simon, M., Longmore, A. J., Howell, R. R. & Benson, J. A. Astrophys. J. 357, 224–230 (1990).

    Article  ADS  Google Scholar 

  3. Abt, H. A. Ann. Rev. astr. Astrophys. 21, 343–372 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Duquennoy, A. & Mayor, M. in Proc. XI Eur. Regional Astr. Meeting IAU (ed. Vasquez, M.) (Cambridge University Press, UK. in the press).

  5. Zinnecker, H. in Low Mass Star Formation & Pre-Main-Sequence Objects (ed. Reipurth, B.) 447–469 (European Southern Observatory, Garching, 1989).

    Google Scholar 

  6. McCarthy, D. W. Jr., Henry, T. J., McLeod, B. & Christou, J. C. Astr. J. 101, 214–219 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Wootten, A. Astrophys J. 337, 858–864 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Sasselov, D. D. & Rucinski, S. M. Astrophys J. 351, 578–582 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Boss, A. P. Comments Astrophys 12, 169–190 (1988).

    ADS  Google Scholar 

  10. Boss, A. P. in Close Binaries (eds Sahade, J., McCluskey, G. & Kondo, Y.) (Kluwer, Dordrecht, in the press).

  11. Pringle, J. E. Mon. Not. R. astr. Soc. 239, 361–370 (1989).

    Article  ADS  Google Scholar 

  12. Pringle, J. E. in NASA ASI Conf. Proc. Star Formation (ed. Kylafis, N.) (Kluwer, Dordrecht, in the press).

  13. Bodenheimer, P., Tohline, J. E. & Black, D. C. Astrophys. J. 242, 209–218 (1980).

    Article  ADS  Google Scholar 

  14. Miyama, S. M., Hayashi, C. & Narita, S. Astrophys J. 279, 621–632 (1984).

    Article  ADS  Google Scholar 

  15. Norman, M. L. & Winkler, K.-H. in Astrophysical Radiation Hydrodynamics (eds Winkler, K.-H. & Norman, M. L.) 187–221 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  16. Norman, M. L., Wilson, J. R. & Barton, R. T. Astrophys J. 239, 968–981 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  17. Mönchmeyer, R. & Müller, E. Astr. Astrophys. 217, 351–367 (1989).

    ADS  Google Scholar 

  18. Tscharnuter, W. M. & Winkler, K.-H. Comput. Phys. Comm. 18, 171 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Myers, P. C. & Benson, P. J. Astrophys J. 266, 309–320 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Myers, P. C. Astrophys J. 270, 105–118 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Benson, P. J. & Myers, P. C. Astrophys J. Suppl. Ser. 71, 89–108 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Arquilla, R. & Goldsmith, P. F. Astrophys. J. 303, 356–374 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Heyer, M. H. Astrophys. J. 324, 311–320 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Myers, P. C. & Goodman, A. A. Astrophys. J. 329, 392–405 (1988).

    Article  ADS  Google Scholar 

  25. Boss, A. P. Astrophys. J. 319, 149–161 (1987).

    Article  ADS  Google Scholar 

  26. Boss, A. P. Mon. Not. R. astr. Soc. 209, 543–567 (1984).

    Article  ADS  Google Scholar 

  27. Artymowicz, P., Clarke, C. J., Lubow, S. H. & Pringle, J. E. Astrophys. J. (in the press).

  28. Clarke, C. J. & Pringle, J. E. Mon. Not. R. astr. Soc. (in the press).

  29. Bodenheimer, P. Astrophys. J. 224, 488–496 (1978).

    Article  ADS  Google Scholar 

  30. Graziani, F. & Black, D. C. Astrophys. J. 251, 337–341 (1981).

    Article  ADS  Google Scholar 

  31. Black, D. C. Astr. J. 87, 1333–1337 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boss, A. Formation of hierarchical multiple protostellar cores. Nature 351, 298–300 (1991). https://doi.org/10.1038/351298a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351298a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing