Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex

Abstract

LIPASES are hydrolytic enzymes which break down triacylglycerides into free fatty acids and glycerols. They have been classified as serine hydrolases owing to their inhibition by diethyl p-nitrophenyl phosphate1. Lipase activity is greatly increased at the lipid-water interface2,3, a phenomenon known as interfacial activation. X-ray analysis has revealed the atomic structures of two triacylglycerol lipases, unrelated in sequence: the human pancreatic lipase (hPL)4, and an enzyme isolated from the fungus Rhizomucor (formerly Mucor) miehei5 (RmL). In both enzymes the active centres contain structurally analogous Asp-His-Ser triads (characteristic of serine proteinases), which are buried completely beneath a short helical segment, or 'lid'. Here we present the crystal structure (at 3 Å resolution) of a complex of R. miehei lipase with n-hexylphosphonate ethyl ester in which the enzyme's active site is exposed by the movement of the helical lid. This movement also increases the nonpolarity of the surface surrounding the catalytic site. We propose that the structure of the enzyme in this complex is equivalent to the activated state generated by the oil–water interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chapusand, C. & Semariva, M. Biochemistry 15, 4987–4996 (1976).

    Google Scholar 

  2. Sarda, L. & Desnuelle, P. Biochim. biophys. Acta 30, 513–521 (1958).

    Article  CAS  Google Scholar 

  3. Pieterson, W. A., Vidal, J. C., Volwerk, J. J. & de Haas, G. H. Biochemistry 13, 1455–1460 (1974).

    Article  CAS  Google Scholar 

  4. Winkler, F. K., D'Arcy, A. & Hunziker, W. Nature 343, 771–774 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Brady, L. et al. Nature 343, 767–770 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Brockman, H. L., Law, J. H. & Kezdy, F. J. J. biol. Chem. 248, 965–4970 (1973).

    Google Scholar 

  7. Wells, M. A. Biochemistry 13, 2248–2257 (1974).

    Article  CAS  Google Scholar 

  8. Brockerhoff, H. Biochim. biophys. Acta 159, 296–303 (1968).

    Article  CAS  Google Scholar 

  9. Entressangles, B. & Desnuelle, P. Biochim. biophys. Acta 341, 437–446 (1974).

    Article  CAS  Google Scholar 

  10. March, J. in Advanced Organic Chemistry 335 (Wiley, Chichester, 1985).

    Google Scholar 

  11. Scott, D. L. et al. Science 250, 1541–1546 (1991).

    Article  ADS  Google Scholar 

  12. White, S. P. et al. Science 250, 1560–1563 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Scott, D. L. et al. Science 250, 1563–1566 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Thunnisen, M. M. G. M. et al. Nature 347, 689–691 (1990).

    Article  ADS  Google Scholar 

  15. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  16. Huge-Jensen, B., Gailuzzo Rubano, D. & Jensen, R. G. Lipids 22, 559–565 (1987).

    Article  CAS  Google Scholar 

  17. Boel, E. et al. Lipids 23, 701–706 (1988).

    Article  CAS  Google Scholar 

  18. Huge-Jensen, B. et al. Lipids 24, 781–785 (1989).

    Article  CAS  Google Scholar 

  19. Fukuto, T. R. & Metcalf, R. L. J. Am. chem. Soc. 81, 372–377 (1959).

    Article  CAS  Google Scholar 

  20. Derewenda, Z. S. & Helliwell, J. R. J. appl. Crystallogr. 22, 123–137 (1989).

    Article  CAS  Google Scholar 

  21. Howard, A. J. et al. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  22. CCP4 Program Suite, Daresbury Laboratory, Warrington, WA4 4AD. SERC, UK (1986).

  23. Derewenda, Z. S. Acta Crystallogr. A45, 227–234 (1989).

    Article  Google Scholar 

  24. Hendrickson, W. A. Meth. Enzym. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  25. Brunger, A. T., Karplus, M. & Petsko, G. A. Acta crystallogr. A45, 50–61 (1989).

    Article  Google Scholar 

  26. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzozowski, A., Derewenda, U., Derewenda, Z. et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351, 491–494 (1991). https://doi.org/10.1038/351491a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351491a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing