Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Partial oxidation of methane to synthesis gas using carbon dioxide

Abstract

INCREASING concern about world dependence on petroleum oil has generated interest in the more efficient use of natural gas1–4. The conversion of methane to the common feedstock synthesis gas (carbon monoxide and hydrogen) by steam reforming is already well established5, and we have shown recently that yields of syn-thesis gas in excess of 90% can be obtained at moderate tem-peratures and ambient pressure by partial oxidation, with air or oxygen, over supported transition-metal catalysts6,7. The use of carbon dioxide as an oxidant for conversion of natural gas to synthesis gas is well established in steam reforming5, and is also known in CO2 reforming (for example, the Calcor process8,9), in which the use of excess CO2 yields mainly CO. In the present work, we describe an alternative catalytic strategy for CO2 reform-ing which gives excellent yields (90%) from a stoichiometric (1:1) feed of CO2 and CH4. Carbon deposition ('coking'), which is a hazard of CO2-reforming routes, is suppressed here by the use of catalysts based on platinum-group metals. We show that the exothermic partial oxidation of CH2 and the endothermic CO2-reforming reaction can be carried out simultaneously, thus introducing the possibility of tuning the thermodynamics of the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. J. & Parkyns, N. D. Catal. Today 8, 305–335 (1991).

    Article  CAS  Google Scholar 

  2. Keller, G. E. & Bhasin, M. M. J. Catal. 73, 9–19 (1982).

    Article  CAS  Google Scholar 

  3. Hutchings, G. J., Scurrell, M. S. & Woodhouse, J. R. Chem. Soc. Rev. 18, 251–283 (1989).

    Article  CAS  Google Scholar 

  4. Gesser, H. D., Hunter, N. R. & Prakash, C. B. Chem. Rev. 85, 235–244 (1985).

    Article  CAS  Google Scholar 

  5. Rostrup-Nielsen, J. R. in Catalysis, Science and Technology (eds Anderson, J. R. & Boudart, M.) Vol. 5, 1–117 (Springer, Berlin, 1984).

    Book  Google Scholar 

  6. Ashcroft, A. T. et al. Nature 344, 319–321 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Vernon, P. D. F., Green, M. L. H., Cheetham, A. K. & Ashcroft, A. T. Catal. Lett. 6, 181–186 (1990).

    Article  CAS  Google Scholar 

  8. Teuner, S. Hydroc. Proc. 64, 106–107 (1985).

    ADS  CAS  Google Scholar 

  9. Kurz, G. & Teuner, S. Erdol. Kohle 43(5), 171–172 (1990).

    CAS  Google Scholar 

  10. Reitmeier, R. E., Atwood, K., Bennett, H. A. & Baugh, H. M. Ind. Engng Chem. 40, 620–626 (1948).

    Article  CAS  Google Scholar 

  11. Lewis, W. K., Gilliland, E. R. & Reed, W. A. Ind. Engng Chem. 41, 1227–1237 (1949).

    Article  CAS  Google Scholar 

  12. Fish, J. D. & Hawn, D. C. Solar Energy Engng 109, 215–220 (1987).

    Article  CAS  Google Scholar 

  13. Parmon, V. N., Anikeav, V. I., Kirillov, V. A. & Zamaraev, K. I. Hydrogen Energy Progress VI. Proc 6th World Hydrogen Energy Conf. (eds Veziroğlu, T. N., Getoff, N. & Weinzierl, P.) 582–599 (Pergamon, New York, 1986).

    Google Scholar 

  14. Richardson, J. T. & Paripatyadar, S. A. Appl. Catal. 61, 293–309 (1990).

    Article  CAS  Google Scholar 

  15. Harth, R. E. & Boltendahl, U. Interdisc. Sci. Rev. 6, 221–228 (1981).

    Article  CAS  Google Scholar 

  16. Rostrup-Nielsen, J. R. J. Catal. 27, 343–356 (1972).

    Article  CAS  Google Scholar 

  17. Tøttrup, P. B. J. Catal. 42, 29–36 (1976).

    Article  Google Scholar 

  18. Gilliland, E. R. & Harriott, P. Ind. Engng Chem. 46, 2195–2002 (1954).

    Article  CAS  Google Scholar 

  19. Rostrup-Nielsen, J. R. Studies Surf. Sci. Catal. 36, 73–78 (1988).

    Article  CAS  Google Scholar 

  20. Dibbern, H. C., Olesen, P., Rostrup-Nielsen, J. R., Tøttrup, P. B. Udengaard, N. R. Hydroc. Proc. 65, 71–74 (1986).

    CAS  Google Scholar 

  21. Rostrup-Nielsen, J. R. J. Catal. 85, 31–43 (1984).

    Article  CAS  Google Scholar 

  22. Lobo, L. S., Trimm, D. L. & Figueiredo, J. L. Proc. 5th Int. Congress. Catal. II (ed. Hightower, J. W.) 1125–1137 (North-Holland, Amsterdam, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, A., Cheetham, A., Green, M. et al. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352, 225–226 (1991). https://doi.org/10.1038/352225a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352225a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing