Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of colloidal forces using an atomic force microscope

Abstract

THE forces between colloidal particles dominate the behaviour of a great variety of materials, including paints, paper, soil, clays and (in some circumstances) cells. Here we describe the use of the atomic force microscope to measure directly the force between a planar surface and an individual colloid particle. The particle, a silica sphere of radius 3.5 µm, was attached to the force sensor in the microscope and the force between the particle and the surface was measured in solutions of sodium chloride. The measurements are consistent with the double-layer theory1,2 of colloidal forces, although at very short distances there are deviations that may be attributed to hydration forces3–6 or surface roughness, and with previous studies on macroscopic systems4–6. Similar measurements should be possible for a wide range of the particulate and fibrous materials that are often encountered in industrial contexts, provided that they can be attached to the microscope probe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Derjaguin, B. & Landau, L. Acta Physiochem. 14, 633 (1941).

    Google Scholar 

  2. Verwey, E. G. W. & Overbeck, J. J. G. Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  3. Proc. Nobel Conf. Hydration Forces and Molecular Aspects of Solvation Chem. Scr. 25, 3–31 (1985).

  4. Horn, R. G., Smith, D. T. & Haller, W. Chem. Phys. Lett. 162, 404–408 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Rabinovich, I., Derjaguin, B. V. & Churaev, N. V. Adv. Colloid Interf. Sci. 16, 63–78 (1982).

    Article  CAS  Google Scholar 

  6. Peschel, G., Belouschek, P., Muller, M. M., Muller, M. R. & Konig, R. Colloid Polym. Sci. 260, 444–451 (1982).

    Article  CAS  Google Scholar 

  7. Israelachvili, J. N. & Adams, G. E. JCS Faraday Trans. I 74, 975–1001 (1978).

    Article  CAS  Google Scholar 

  8. Horn, R. G. & Israelachvili, J. N. Chem. Phys. Lett. 71, 192–194 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Pashley, R. M. J. Colloid Interf. Sci. 83, 531–546 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Pashley, R. M., McGuiggan, P. M., Ninham, B. W. & Evans, D. F. Science 229, 1088–1089 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Ottewill, R. H. Concentrated Dispersions in Colloid Dispersions Ch. 9 (ed. Goodwin, J. W.) (Royal Society of Chemistry, London, 1982).

    Google Scholar 

  12. Ellmelech, M. JCS Faraday Trans. I 86, 1623–1624 (1990). Zhenge, X. & Yoon, R. J. Colloid Interf. Sci. 134, 427–434 (1990).

    Article  Google Scholar 

  13. Brown, M. A. & Staples, E. J. Langmuir 6, 1260–1265 (1990). Prieve, D. C. & Freij, N. A. Langmuir 6, 396–403 (1990).

    Article  CAS  Google Scholar 

  14. Binnig, G. & Rohrer, H. Helv. Phys. Acta 55, 726–735 (1982).

    CAS  Google Scholar 

  15. Binnig, G., Quate, C. F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Martin, Y., Williams, C. & Wickramasinghe, H. J. appl. Phys. 61, 4223–4229 (1987).

    Article  Google Scholar 

  17. Burnham, N. A. & Colten, R. J. J. Vac. Sci. Technol. A7, 2906–2913 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Ducker, W. A. & Cook, R. F. Appl. Phys. Lett. 56, 2048–2410 (1990).

    Article  Google Scholar 

  19. Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R. & Quate, C. F. Appl. Phys. Lett. 54, 2691–2653 (1989).

    Article  ADS  Google Scholar 

  20. Wiese, G. R., James, R. O. & Healy, T. W. Disc. Faraday Soc. 52, 302–311 (1975).

    Article  Google Scholar 

  21. Chan, D. Y. C. & Horn, R. G. J. chem. Phys. 83, 5311–5324 (1990).

    Article  ADS  Google Scholar 

  22. Parker, J. L., Christenson, H. K. & Ninham, B. W. Rev. sci. Instrum. 60, 3135–3138 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Meyer, G. & Amer, N. M. Appl. Phys. Lett. 53, 1045–1047 (1988).

    Article  ADS  Google Scholar 

  24. Derjaguin, B. V. Kolloid. Zh. 69, 155–164 (1934).

    Article  Google Scholar 

  25. Hunter, R. J. Foundations of Colloid Science, 222 (Clarendon, Oxford, 1987).

    Google Scholar 

  26. Chan, D. Y. C., Pashley, R. M. & White, L. R. J. Coll. Inter. Sci. 77, 283 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducker, W., Senden, T. & Pashley, R. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991). https://doi.org/10.1038/353239a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing