Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Do upper-ocean sediment traps provide an accurate record of particle flux?

Abstract

SEDIMENT traps are widely used to measure the vertical flux of particulate matter in the oceans. In the upper ocean, sediment traps have been used to determine the extent to which CO2 Axed by primary producers is exported as particulate organic carbon1–3. In addition, the observed decrease of particle flux with depth has been used to predict regeneration rates of organic matter and associated elements3. Over seasonal or annual timescales, the import of limiting nutrients into the upper ocean (new production) should be balanced by particle export4,5. Given the importance of accurately determining the sinking particle flux, it has been suggested that 234Th might be used to 'calibrate' shallow-trap fluxes6. Here I present a re-evaluation of existing 234Th data which indicates that trap-derived and model-derived 234Th particle fluxes can differ by a factor of ±3–10, suggesting that shallow traps may not provide an accurate measure of particle fluxes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Suess, E. Nature 288, 260–263 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Knauer, G. A. & Martin, J. H. Limnol. Oceanogr. 26, 181–186 (1981).

    Article  ADS  Google Scholar 

  3. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  5. Eppley, R. W., Renger, E. H. & Betzer, P. R. Deep-Sea Res. 30, 311–323 (1983).

    Article  ADS  CAS  Google Scholar 

  6. US Global Ocean Flux Study US GOFS Planning Rep. No. 10 (1989).

  7. Chen, J. H., Edwards, L. & Wasserburg, G. J. Earth planet. Sci. Lett. 80, 241–251 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Coale, K. H. & Bruland, K. W. Limnol. Oceanogr. 30, 22–33 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Bhat, S. G., Lai, R. & Moore, W. S. Earth planet. Sci. Lett. 5, 483–491 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Santschi, P. H., Li, Y.-H. & Bell, J. Earth planet. Sci. Lett. 45, 201–213 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Coale, K. H. & Bruland, K. W. Limnol. Oceanogr. 32, 189–200 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Tsunogai, S., Taguchi, K. & Harada, K. J. oceanograph. Soc. Japan 42, 91–98 (1986).

    Article  Google Scholar 

  13. Schmidt, S., Reyss, J. L., Nguyen, H. V. & Buat-Menard, P. Palaeogeogr. Palaeoclimatol. Palaeoecol. 89, 25–33 (1990).

    Article  Google Scholar 

  14. Murray, J. W., Downs, J. N., Strom, S., Wei, C.-L. & Jannasch, H. W. Deep-Sea Res. 36, 1471–1489 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Buesseler, K. O., Bacon, M. P., Cochran, J. K. & Livingston, H. D. Deep-Sea Res. (in the press).

  16. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep-Sea Res. A26, 97–108 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Bruland, K. W. & Coale, K. H. in Dynamic Process in the Chemistry of the Upper Ocean (eds Burton, J. D., Brewer, P. G. & Chesselet, R.) 159–172 (Plenum, New York, 1986).

    Book  Google Scholar 

  18. Beals, D. M. & Bruland, K. W. Deep-Sea Res. (in the press).

  19. Wei, C-L. & Murray, J. W. Limnol. Oceanogr. (in the press).

  20. Wei, C-L. & Murray, J. W. Deep-Sea Res. (in the press).

  21. Michaels, A. F., Silver, M. W., Gowing, M. M. & Knauer, G. A. Deep-Sea Res. 37, 1285–1296 (1990).

    Article  ADS  Google Scholar 

  22. Coale, K. H. Limnol. Oceanogr. 35, 1376–1381 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Knauer, G. A., Karl, D. M., Martin, J. H. & Hunter, C. N. J. mar. Res. 42, 445–462 (1984).

    Article  CAS  Google Scholar 

  24. Hargrave, B. T. & Burns, N. M. Limnol. Oceanogr. 24, 1124–1136 (1979).

    Article  ADS  Google Scholar 

  25. Gardner, W. D. J. mar. Res. 38, 17–39 (1980).

    Google Scholar 

  26. Butman, C. A., Grant, W. D. & Stolzenbach, K. D. J. mar. Res. 44, 601–644 (1986).

    Article  Google Scholar 

  27. Gust, G., Bowles, W., Giordano, S. & Huettel, M. J. mar. Res. (submitted).

  28. White, J. Mar. Geophys. Res. 12, 145–152 (1990).

    Article  Google Scholar 

  29. Gardner, W. D. Deep-Sea Res. 32, 349–361 (1985).

    Article  ADS  Google Scholar 

  30. Fowler, S. W. & Knauer, G. A. Prog. Oceanogr. 16, 147–194 (1986).

    Article  ADS  Google Scholar 

  31. Angel, M. V. in Productivity in the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 155–175 (Wiley, New York, 1989).

    Google Scholar 

  32. Buat-Menard, P. et al. in Radionuclides: A Tool For Oceanography (eds Guary, J. C., Guegueniat, P. & Pentreath, R. J.) 121–130 (Elsevier, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buesseler, K. Do upper-ocean sediment traps provide an accurate record of particle flux?. Nature 353, 420–423 (1991). https://doi.org/10.1038/353420a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353420a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing